解释如下代码:def match_twosided(desc1,desc2): """ Two-sided symmetric version of match(). """ matches_12 = match(desc1,desc2) matches_21 = match(desc2,desc1) ndx_12 = matches_12.nonzero()[0] # remove matches that are not symmetric for n in ndx_12: if matches_21[int(matches_12[n])] != n: matches_12[n] = 0 return matches_12

时间: 2024-03-29 09:37:01 浏览: 20
这段代码是match_twosided函数的实现,它是对match函数的扩展。match_twosided函数的作用是在两个图像之间进行双向的特征匹配。与match函数类似,输入是两个图像的描述符(desc1和desc2),输出是一个数组(matches_12),它的长度等于第一个图像中的描述符数量,数组的每个元素表示第一个图像中描述符的匹配项在第二个图像中的索引。 该函数首先调用match函数两次,分别用于计算从第一个图像到第二个图像和从第二个图像到第一个图像的匹配。然后,函数通过比较两个匹配结果来确定哪些匹配不是对称的,并将这些不对称的匹配移除。最后,函数返回匹配数组(matches_12)。 总的来说,match_twosided函数相对于match函数是一种更加严格的匹配方法,它可以减少不对称匹配的数量,提高匹配的准确性。
相关问题

matlab代码function probeData(varargin)if (nargin == 1) settings = deal(varargin{1}); fileNameStr = settings.fileName; elseif (nargin == 2) [fileNameStr, settings] = deal(varargin{1:2}); if ~ischar(fileNameStr) error('File name must be a string'); end else error('Incorect number of arguments'); end[fid, message] = fopen(fileNameStr, 'rb'); if (fid > 0) % Move the starting point of processing. Can be used to start the % signal processing at any point in the data record (e.g. for long % records). fseek(fid, settings.skipNumberOfBytes, 'bof'); % Find number of samples per spreading code samplesPerCode = round(settings.samplingFreq / ... (settings.codeFreqBasis / settings.codeLength)); if (settings.fileType==1) dataAdaptCoeff=1; else dataAdaptCoeff=2; end % Read 100ms of signal [data, count] = fread(fid, [1, dataAdaptCoeff100samplesPerCode], settings.dataType); fclose(fid); if (count < dataAdaptCoeff100samplesPerCode) % The file is to short error('Could not read enough data from the data file.'); end %--- Initialization --------------------------------------------------- figure(100); clf(100); timeScale = 0 : 1/settings.samplingFreq : 5e-3; %--- Time domain plot ------------------------------------------------- if (settings.fileType==1) subplot(2, 2, 3); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... data(1:round(samplesPerCode/2))); axis tight; grid on; title ('Time domain plot'); xlabel('Time (ms)'); ylabel('Amplitude'); else data=data(1:2:end) + 1i .* data(2:2:end); subplot(3, 2, 4); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... real(data(1:round(samplesPerCode/2)))); axis tight; grid on; title ('Time domain plot (I)'); xlabel('Time (ms)'); ylabel('Amplitude'); subplot(3, 2, 3); plot(1000 * timeScale(1:round(samplesPerCode/2)), ... imag(data(1:round(samplesPerCode/2)))); axis tight; grid on; title ('Time domain plot (Q)'); xlabel('Time (ms)'); ylabel('Amplitude'); end %--- Frequency domain plot -------------------------------------------- if (settings.fileType==1) %Real Data subplot(2,2,1:2); pwelch(data, 32768, 2048, 32768, settings.samplingFreq/1e6) else % I/Q Data subplot(3,2,1:2); [sigspec,freqv]=pwelch(data, 32768, 2048, 32768, settings.samplingFreq,'twosided'); plot(([-(freqv(length(freqv)/2:-1:1));freqv(1:length(freqv)/2)])/1e6, ... 10*log10([sigspec(length(freqv)/2+1:end); sigspec(1:length(freqv)/2)])); end axis tight; grid on; title ('Frequency domain plot'); xlabel('Frequency (MHz)'); ylabel('Magnitude'); %--- Histogram -------------------------------------------------------- if (settings.fileType == 1) subplot(2, 2, 4); hist(data, -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram'); xlabel('Bin'); ylabel('Number in bin'); else subplot(3, 2, 6); hist(real(data), -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram (I)'); xlabel('Bin'); ylabel('Number in bin'); subplot(3, 2, 5); hist(imag(data), -128:128) dmax = max(abs(data)) + 1; axis tight; adata = axis; axis([-dmax dmax adata(3) adata(4)]); grid on; title ('Histogram (Q)'); xlabel('Bin'); ylabel('Number in bin'); end else %=== Error while opening the data file ================================ error('Unable to read file %s: %s.', fileNameStr, message); end % if (fid > 0)翻译成python

抱歉,由于MATLAB和Python的语法和结构有所不同,将MATLAB代码翻译成Python代码需要对代码进行一定程度的重构和修改。以下是一个可能的Python代码实现,仅供参考: ```python import numpy as np import matplotlib.pyplot as plt def probeData(*args): if len(args) == 1: settings = args[0] fileNameStr = settings['fileName'] elif len(args) == 2: fileNameStr, settings = args if not isinstance(fileNameStr, str): raise ValueError('File name must be a string') else: raise ValueError('Incorrect number of arguments') with open(fileNameStr, 'rb') as fid: # Move the starting point of processing. # Can be used to start the signal processing at any point in the data record (e.g. for long records). fid.seek(settings['skipNumberOfBytes'], 0) # Find number of samples per spreading code samplesPerCode = round(settings['samplingFreq'] / (settings['codeFreqBasis'] / settings['codeLength'])) if settings['fileType'] == 1: dataAdaptCoeff = 1 else: dataAdaptCoeff = 2 # Read 100ms of signal data = np.fromfile(fid, dtype=settings['dataType'], count=dataAdaptCoeff*100*samplesPerCode) fid.close() if len(data) < dataAdaptCoeff*100*samplesPerCode: # The file is too short raise ValueError('Could not read enough data from the data file.') #--- Initialization --------------------------------------------------- plt.figure(100) plt.clf() timeScale = np.arange(0, 5e-3, 1/settings['samplingFreq']) #--- Time domain plot ------------------------------------------------- if settings['fileType'] == 1: plt.subplot(2, 2, 3) plt.plot(1000*timeScale[:round(samplesPerCode/2)], data[:round(samplesPerCode/2)]) plt.axis('tight') plt.grid(True) plt.title('Time domain plot') plt.xlabel('Time (ms)') plt.ylabel('Amplitude') else: data = data[::2] + 1j*data[1::2] plt.subplot(3, 2, 4) plt.plot(1000*timeScale[:round(samplesPerCode/2)], np.real(data[:round(samplesPerCode/2)])) plt.axis('tight') plt.grid(True) plt.title('Time domain plot (I)') plt.xlabel('Time (ms)') plt.ylabel('Amplitude') plt.subplot(3, 2, 3) plt.plot(1000*timeScale[:round(samplesPerCode/2)], np.imag(data[:round(samplesPerCode/2)])) plt.axis('tight') plt.grid(True) plt.title('Time domain plot (Q)') plt.xlabel('Time (ms)') plt.ylabel('Amplitude') #--- Frequency domain plot -------------------------------------------- if settings['fileType'] == 1: #Real Data plt.subplot(2, 2, 1) plt.subplot(2, 2, 2) f, Pxx = signal.welch(data, fs=settings['samplingFreq'], nperseg=32768, noverlap=2048, nfft=32768) plt.plot(f/1e6, 10*np.log10(Pxx)) else: # I/Q Data plt.subplot(3, 2, 1) plt.subplot(3, 2, 2) f, Pxx = signal.welch(data, fs=settings['samplingFreq'], nperseg=32768, noverlap=2048, nfft=32768, return_onesided=False) plt.plot((np.concatenate((-f[len(f)//2:], f[:len(f)//2])))/1e6, 10*np.log10(np.concatenate((Pxx[len(Pxx)//2:], Pxx[:len(Pxx)//2])))) plt.axis('tight') plt.grid(True) plt.title('Frequency domain plot') plt.xlabel('Frequency (MHz)') plt.ylabel('Magnitude') #--- Histogram -------------------------------------------------------- if settings['fileType'] == 1: plt.subplot(2, 2, 4) plt.hist(data, bins=np.arange(-128, 129)) dmax = np.max(np.abs(data)) + 1 plt.axis([-dmax, dmax, *plt.axis()[2:]]) plt.grid(True) plt.title('Histogram') plt.xlabel('Bin') plt.ylabel('Number in bin') else: plt.subplot(3, 2, 6) plt.hist(np.real(data), bins=np.arange(-128, 129)) dmax = np.max(np.abs(data)) + 1 plt.axis([-dmax, dmax, *plt.axis()[2:]]) plt.grid(True) plt.title('Histogram (I)') plt.xlabel('Bin') plt.ylabel('Number in bin') plt.subplot(3, 2, 5) plt.hist(np.imag(data), bins=np.arange(-128, 129)) dmax = np.max(np.abs(data)) + 1 plt.axis([-dmax, dmax, *plt.axis()[2:]]) plt.grid(True) plt.title('Histogram (Q)') plt.xlabel('Bin') plt.ylabel('Number in bin') ```

用matlab代码 syms t x(t) x(t) = exp(-t)*(sin(5*t)+cos(10*t))*heaviside(t); x = double(x(t)); % 将函数x(t)转换为数值数组 x = x - mean(x); % 去除直流分量 x = x / max(abs(x)); % 归一化处理 % 计算 x_subs 的长度 t_subs = linspace(0, 10, length(x)); x_subs = subs(x,t,t_subs); x_subs = x_subs(1:length(x_subs)-mod(length(x_subs),N)); N = 256; % 分析窗口长度 w = hamming(N); % 汉明窗 noverlap = round(N/2); % 重叠窗口长度 nfft = 1024; % FFT长度 [S,F,T] = spectrogram(x_subs,w,noverlap,nfft,'twosided'); % 计算频谱 S = abs(S); % 取幅值 S_mean = mean(S,2); plot(F, S_mean); xlabel('Frequency (Hz)'); ylabel('Magnitude'); title('Spectrum of x(t)'); 出现错误使用 symengine Unable to convert expression containing symbolic variables into double array. Apply 'subs' function first to substitute values for variables. 出错 sym/double (第 729 行) Xstr = mupadmex('symobj::double', S.s, 0);报错,如何处理并给出完整代码

这个错误通常是因为在计算 `x_subs` 数组时,没有正确地将符号变量替换为数值。在这个代码中,错误是因为 `x_subs` 数组的长度未被正确设置。此外,在计算 `x_subs` 数组时,应该使用 `double` 函数而不是 `subs` 函数来将符号变量替换为数值。 以下是修正后的代码: ```matlab syms t x(t) x(t) = exp(-t)*(sin(5*t)+cos(10*t))*heaviside(t); x = double(x(t)); % 将函数x(t)转换为数值数组 x = x - mean(x); % 去除直流分量 x = x / max(abs(x)); % 归一化处理 N = 256; % 分析窗口长度 w = hamming(N); % 汉明窗 noverlap = round(N/2); % 重叠窗口长度 nfft = 1024; % FFT长度 % 计算 x_subs 的长度 n = floor(length(x)/N); x_subs = zeros(N, n); for i = 1:n x_subs(:,i) = x((i-1)*N+1:i*N); end [S,F,T] = spectrogram(x_subs,w,noverlap,nfft,'twosided'); % 计算频谱 S = abs(S); % 取幅值 S_mean = mean(S,2); plot(F, S_mean); xlabel('Frequency (Hz)'); ylabel('Magnitude'); title('Spectrum of x(t)'); ``` 这个代码会将 `x_subs` 数组的长度设置为 `N` 的整数倍,并使用循环将 `x` 数组拆分成多个长度为 `N` 的片段。在计算 `S` 数组时,直接使用 `x_subs` 数组即可,无需再使用 `subs` 函数进行符号变量的替换。运行后,即可得到正确的频谱图。

相关推荐

最新推荐

recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&amp;ffmpeg推流
recommend-type

基于AI框架的智能工厂设计思路.pptx

基于AI框架的智能工厂设计思路.pptx
recommend-type

基于微信小程序的健身房私教预约系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明)

自2014年底以来,体育产业政策红利接踵而至。在政府鼓励下,一系列体育产业政策出现,加之资本的投入使得优质的内容和商品大幅度的产生,以及居民健康意识的加强和参与大众体育的热情,使得体育产业进入了黄金发展期。大众健身作为体育产业的一部分,正如火如茶的发展。谈及健身领域,最重要的两个因素就是健身场地和教练管理,在互联网时代下,专业的健身商品也成为企业发展重要的桎梏。2016年6月3日国务院印发的《全面健身计划(2016-2020年)》中提到:“不断扩大的健身人群、支持市场涌现适合亚洲人的健身课程、专业教练管理培养机构、专业健身教练管理以及体验良好的健身场所。 健身房私教预约的设计主要是对系统所要实现的功能进行详细考虑,确定所要实现的功能后进行界面的设计,在这中间还要考虑如何可以更好的将功能及页面进行很好的结合,方便用户可以很容易明了的找到自己所需要的信息,还有系统平台后期的可操作性,通过对信息内容的详细了解进行技术的开发。 健身房私教预约的开发利用现有的成熟技术参考,以源代码为模板,分析功能调整与健身房私教预约的实际需求相结合,讨论了基于健身房私教预约的使用。  关键词:健身房私教预约小程
recommend-type

基于微信小程序的高校寻物平台(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明)

随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了基于微信小程序的高校寻物平台的开发全过程。通过分析基于微信小程序的高校寻物平台管理的不足,创建了一个计算机管理基于微信小程序的高校寻物平台的方案。文章介绍了基于微信小程序的高校寻物平台的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。 本基于微信小程序的高校寻物平台有管理员,用户以及失主三个角色。管理员功能有个人中心,用户管理,失主管理,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理,公告信息管理,举报投诉管理,系统管理等。用户功能有个人中心,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理等。失主功能有个人中心,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理,举报投诉管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于微信小程序的高校寻物平
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依