基于stm32f103c8t6的红外测温仪代码

时间: 2023-08-23 15:05:39 浏览: 52
以下为基于STM32F103C8T6的红外测温仪的代码,主要使用了STM32的定时器、ADC、UART等模块: ```c #include "stm32f10x.h" #include "stdio.h" #define USART_REC_LEN 20 //定义串口接收缓冲区大小 #define TEMP_AMBIENT_ADDR 0x00 //环境温度寄存器地址 #define TEMP_OBJECT_ADDR 0x01 //物体温度寄存器地址 uint8_t USART_RX_BUF[USART_REC_LEN]; //串口接收缓冲区 uint16_t USART_RX_STA = 0; //串口接收状态标志 void USART1_Init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); //使能USART1、GPIOA时钟 //USART1_TX PA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化PA9 //USART1_RX PA.10 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //PA.10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化PA10 //USART1 初始化设置 USART_InitStructure.USART_BaudRate = 115200; //波特率设置 USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; //无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_Cmd(USART1, ENABLE); //使能串口1 } void TIM3_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //TIM3时钟使能 TIM_TimeBaseStructure.TIM_Period = 199; //定时器周期200us TIM_TimeBaseStructure.TIM_Prescaler = 71; //预分频器72,即72MHz/72 = 1MHz TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); TIM_Cmd(TIM3, ENABLE); //使能TIM3 } void ADC1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA, ENABLE); //使能ADC1、GPIOA时钟 //PA.0 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //ADC1 初始化设置 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //软件触发转换 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //1个转换在规则序列中 ADC_Init(ADC1, &ADC_InitStructure); //使能指定的ADC1的DMA传输 ADC_DMACmd(ADC1, ENABLE); //启动ADC1校准 ADC_ResetCalibration(ADC1); //复位校准寄存器 while (ADC_GetResetCalibrationStatus(ADC1)) ; //等待校准寄存器复位完成 ADC_StartCalibration(ADC1); //开始校准 while (ADC_GetCalibrationStatus(ADC1)) ; //等待校准完成 //开启ADC1 ADC_Cmd(ADC1, ENABLE); } uint16_t Get_Adc(uint8_t ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5); //启动指定的ADC转换 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //等待转换完成 while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)) ; //返回最近一次ADC1规则组的转换结果 return ADC_GetConversionValue(ADC1); } uint16_t readTemp(uint8_t addr) { uint16_t data; I2C_Start(); I2C_Send_Byte(0x5a << 1 | 0); //发送写命令 if (I2C_Wait_Ack() != 0) return 0xffff; //接收应答失败,退出 I2C_Send_Byte(addr); //发送寄存器地址 I2C_Wait_Ack(); //等待应答 I2C_Start(); //重新启动一次总线 I2C_Send_Byte(0x5a << 1 | 1); //发送读命令 I2C_Wait_Ack(); //等待应答 data = I2C_Read_Byte(0); //读取数据 I2C_Stop(); //停止总线 return data; } void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { static uint8_t i = 0; USART_RX_BUF[i++] = USART_ReceiveData(USART1); if (USART_RX_BUF[i - 1] == '\n') //接收到换行符 { USART_RX_STA |= 1 << 15; //标志接收完成 USART_RX_BUF[i - 1] = 0; //将换行符替换为字符串结束符 i = 0; //重新开始接收 } } } void USART_Send_Str(char *str) { while (*str) { while ((USART1->SR & 0X40) == 0) //等待上一次发送完成 ; USART1->DR = (u8)*str++; } } int main(void) { uint16_t raw; float temp_ambient, temp_object; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //优先级分组设置 USART1_Init(); //初始化串口1 TIM3_Init(); //初始化定时器3 ADC1_Init(); //初始化ADC1 I2C_GPIO_Config(); //初始化I2C总线 delay_init(); //延时函数初始化 while (1) { TIM_SetCounter(TIM3, 0); //计数器清零 GPIO_ResetBits(GPIOA, GPIO_Pin_6); //拉低SCL while (TIM_GetCounter(TIM3) < 5); //等待5us GPIO_SetBits(GPIOA, GPIO_Pin_6); //拉高SCL while (TIM_GetCounter(TIM3) < 10); //等待10us GPIO_ResetBits(GPIOA, GPIO_Pin_6); //拉低SCL raw = Get_Adc(0); //采集环境温度 temp_ambient = (float)raw * 3.3 / 4096 * 100 - 273.15; //计算环境温度 raw = readTemp(TEMP_OBJECT_ADDR); //读取物体温度 if (raw == 0xffff) //读取失败 { USART_Send_Str("read object temperature failed!\r\n"); delay_ms(1000); continue; } temp_object = (float)(raw & 0x7fff) * 0.02 - 273.15; //计算物体温度 if (raw & 0x8000) //负温度 { temp_object = -temp_object; } printf("ambient temperature:%.2fC, object temperature:%.2fC\r\n", temp_ambient, temp_object); delay_ms(1000); } } ``` 在此代码中,我们使用了定时器3来产生红外测温仪所需的时序信号,使用ADC1来采集环境温度,使用I2C总线读取红外传感器的物体温度。同时,我们通过串口1将温度数据发送至PC端进行显示。

相关推荐

最新推荐

recommend-type

STM32F103C8T6开发板+GY521制作Betaflight飞控板详细图文教程

STM32F103C8T6黑色开发板1个(11.5元) GY-521加速度计模块1个(3.8元) ams1117-3.3电压转换芯片1个(0.38元) 5V有源蜂鸣器1个(0.43元) 5cm*7cm洞洞板1个(0.45元)  肖特基二极管2个 ss8050三极管2个 1k电阻2个,...
recommend-type

【MCU实战经验】基于STM32F103C8T6的hart总线收发器设计

HART总线调试器是基于HART现场工业总线协议研制的可以与现场支持HART总线协议的变送器终端进行通信的一种便携式仪器。使用本设备可以对现场终端的测量范围、阻尼时间、显示模式等参数变量进行现场设定和调校,并能对...
recommend-type

MAX30102心率血氧传感器在STM32F103C8T6上的应用

标准库与HAL库,用IO口模拟IIC void I2C_GPIO_Config(void) //IIC引脚初始化 { #ifdef STDLIB GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd&#40;RCC_APB2Periph_GPIOB , ENABLE&#41;...
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

python 如何将DWG转DXF

Python可以使用CAD软件的COM组件进行DWG到DXF的转换。以下是示例代码: ```python import win32com.client def dwg_to_dxf(dwg_path, dxf_path): acad = win32com.client.Dispatch("AutoCAD.Application") doc = acad.Documents.Open(dwg_path) doc.SaveAs(dxf_path, win32com.client.constants.acDXF) doc.Close() acad.Quit
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这