用U-Net实现自动驾驶车道线检测的代码
时间: 2024-10-24 15:16:21 浏览: 26
用U-Net实现自动驾驶车道线检测的代码通常是Python结合深度学习库TensorFlow或PyTorch编写。由于这是一个相对复杂的过程,涉及到深度学习模型构建、数据预处理、训练和评估等步骤,这里只能提供一个简化的框架示例。假设已经安装了相关的库:
```python
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate
# U-Net结构
def unet(input_size=(None, None, 3)):
inputs = Input(input_size)
# 编码部分
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
# 中间层
conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
# 解码部分
up4 = concatenate([UpSampling2D(size=(2, 2))(conv3), conv2], axis=3)
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(up4)
conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv4)
up5 = concatenate([UpSampling2D(size=(2, 2))(conv4), conv1], axis=3)
conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(up5)
conv5 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv5)
# 输出层
outputs = Conv2D(1, (1, 1), activation='sigmoid')(conv5) # Sigmoid用于二分类,输出每个像素的概率
return Model(inputs=inputs, outputs=outputs)
# 初始化并编译模型
model = unet()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 调整模型尺寸以适应数据大小
model.fit(train_data, train_labels, epochs=20, validation_data=(val_data, val_labels))
```
这个例子中,`train_data`和`train_labels`是训练数据集,包含原始图像和对应的车道线掩码;`val_data`和`val_labels`是验证数据集。注意实际项目中需要对数据进行预处理,例如归一化、裁剪和增强,以及可能的迁移学习调整。
阅读全文