多个graph训练VGAE代码示例
时间: 2023-07-03 10:29:22 浏览: 92
下面是一个多个graph训练VGAE的代码示例:
```python
import dgl
import torch
import torch.nn.functional as F
from dgl.nn import GraphConv
from dgl.data import MiniGCDataset
class VGAE(torch.nn.Module):
def __init__(self, in_feats, hidden_size):
super(VGAE, self).__init__()
self.conv1 = GraphConv(in_feats, hidden_size)
self.conv2 = GraphConv(hidden_size, hidden_size)
self.mean_fc = torch.nn.Linear(hidden_size, hidden_size)
self.logstd_fc = torch.nn.Linear(hidden_size, hidden_size)
def forward(self, g):
h = g.ndata['feat']
h = F.relu(self.conv1(g, h))
h = F.relu(self.conv2(g, h))
mean = self.mean_fc(h)
logstd = self.logstd_fc(h)
return mean, logstd
def train(dataset):
model = VGAE(10, 5)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(10):
for graph, _ in dataset:
optimizer.zero_grad()
h = graph.ndata['feat']
mean, logstd = model(graph)
z = mean + torch.randn([graph.num_nodes(), 5]) * torch.exp(logstd)
recon = torch.sigmoid(torch.matmul(z, z.t()))
loss = -torch.mean(
torch.sum(graph.adjacency_matrix().to_dense() * torch.log(recon)
+ (1 - graph.adjacency_matrix().to_dense()) * torch.log(1 - recon), dim=1))
kl_loss = -0.5 * torch.mean(torch.sum(1 + 2 * logstd - mean.pow(2) - torch.exp(logstd).pow(2), dim=1))
loss += kl_loss
loss.backward()
optimizer.step()
if __name__ == '__main__':
dataset = MiniGCDataset(80, 10, 20)
graphs = []
for graph, _ in dataset:
graphs.append(graph)
batched_graph = dgl.batch(graphs)
train(batched_graph)
```
在这个示例中,我们首先定义了一个VGAE模型,然后在`train()`函数中,我们对数据集中的每个图进行了训练。注意,这里我们将所有图合并成一个大图,然后在训练时使用这个大图进行训练。这里的损失函数包括重构误差和KL散度,用于衡量生成的图与原始图之间的相似度。最后,我们将所有图合并到一个大图中,然后使用`train()`函数进行训练。
阅读全文