利用源码分别实现对des和3des可加密的软件

时间: 2023-05-01 13:05:56 浏览: 65
可以使用OpenSSL等加密库中的函数来实现对DES和3DES算法的加密和解密过程。也可以使用Python中的PyCrypto等库进行加密和解密操作。另外,也可以根据DES和3DES算法的算法原理自己实现加密和解密函数。
相关问题

3des 加密算法 源码

3DES(Triple Data Encryption Algorithm)是一种对称加密算法,是DES(Data Encryption Standard)算法的改进版本。其基本原理是将数据经过三次DES加密运算,以增加加密强度。 以下是3DES加密算法的简单源码示例(使用C语言): ```c #include <stdio.h> #include <stdlib.h> #include <openssl/des.h> void tripleDesEncrypt(const unsigned char* plaintext, const unsigned char* key, unsigned char* ciphertext) { DES_cblock key1, key2, key3; DES_key_schedule ks1, ks2, ks3; // 将原始密钥按需求分为3份,如果密钥长度不够,可以通过填充等方式进行处理 memcpy(key1, key, 8); memcpy(key2, key+8, 8); memcpy(key3, key+16, 8); // 设置3个子密钥 DES_set_key_unchecked(&key1, &ks1); DES_set_key_unchecked(&key2, &ks2); DES_set_key_unchecked(&key3, &ks3); // 进行三次DES加密运算 DES_ecb3_encrypt(plaintext, ciphertext, &ks1, &ks2, &ks3, DES_ENCRYPT); } int main() { unsigned char plaintext[] = "Hello, World!"; unsigned char key[] = "abcdefghabcdefghabcdefgh"; unsigned char ciphertext[16]; // 3DES加密结果为64位(8字节) tripleDesEncrypt(plaintext, key, ciphertext); printf("CipherText: %s\n", ciphertext); return 0; } ``` 这段示例代码使用了OpenSSL库中的DES函数。首先,我们将原始密钥分为三个8字节的子密钥;然后,使用这三个子密钥依次对明文进行DES加密运算。最终得到的密文为长度为8字节的数据。 注意:以上代码只是简单示例,实际使用中需要考虑更多的安全性和实现细节。另外,由于DES算法的弱密钥问题,实际应用中更常用的是AES等更强大的加密算法。

3DES加密算法源码 c语言

以下是3DES加密算法的C语言源码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define ENCRYPT 1 #define DECRYPT 0 typedef unsigned char BYTE; typedef unsigned long DWORD; /* 定义DES算法中使用的数据类型 */ typedef struct { BYTE key[8]; BYTE encrypt; BYTE iv[8]; } des_context; /* 定义3DES算法中使用的数据类型 */ typedef struct { des_context des1; des_context des2; des_context des3; } des3_context; /* 定义DES算法中使用的常量 */ static const BYTE odd_parity_table[256] = { 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 254, 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 254 }; static const BYTE bytebit[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; static const DWORD bigbyte[24] = { 0x800000L, 0x400000L, 0x200000L, 0x100000L, 0x080000L, 0x040000L, 0x020000L, 0x010000L, 0x008000L, 0x004000L, 0x002000L, 0x001000L, 0x000800L, 0x000400L, 0x000200L, 0x000100L, 0x000080L, 0x000040L, 0x000020L, 0x000010L, 0x000008L, 0x000004L, 0x000002L, 0x000001L }; static const BYTE pc1[56] = { 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, 28, 20, 12, 4, 27, 19, 11, 3 }; static const BYTE totrot[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; static const BYTE pc2[48] = { 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }; static const DWORD SP1[64] = { 0x01010400L, 0x00000000L, 0x00010000L, 0x01010404L, 0x01010004L, 0x00010404L, 0x00000004L, 0x00010000L, 0x00000400L, 0x01010400L, 0x01010404L, 0x00000400L, 0x01000404L, 0x01010004L, 0x01000000L, 0x00000004L, 0x00000404L, 0x01000400L, 0x01000400L, 0x00010400L, 0x00010400L, 0x01010000L, 0x01010000L, 0x01000404L, 0x00010004L, 0x01000004L, 0x01000004L, 0x00010004L, 0x00000000L, 0x00000404L, 0x00010404L, 0x01000000L, 0x00010000L, 0x01010404L, 0x00000004L, 0x01010000L, 0x01010400L, 0x01000000L, 0x01000000L, 0x00000400L, 0x01010004L, 0x00010000L, 0x00010400L, 0x01000004L, 0x00000400L, 0x00000004L, 0x01000404L, 0x00010404L, 0x01010404L, 0x00010004L, 0x01010000L, 0x01000404L, 0x01000004L, 0x00000404L, 0x00010404L, 0x01010400L, 0x00000404L, 0x01000400L, 0x01000400L, 0x00000000L, 0x00010004L, 0x00010400L, 0x00000000L, 0x01010004L }; static const DWORD SP2[64] = { 0x80108020L, 0x80008000L, 0x00008000L, 0x00108020L, 0x00100000L, 0x00000020L, 0x80100020L, 0x80008020L, 0x80000020L, 0x80108020L, 0x80108000L, 0x80000000L, 0x80008000L, 0x00100000L, 0x00000020L, 0x80100020L, 0x00108000L, 0x00100020L, 0x80008020L, 0x00000000L, 0x80000000L, 0x00008000L, 0x00108020L, 0x80100000L, 0x00100020L, 0x80000020L, 0x00000000L, 0x00108000L, 0x00008020L, 0x80108000L, 0x80100000L, 0x00008020L, 0x00000000L, 0x00108020L, 0x80100020L, 0x00100000L, 0x80008020L, 0x80100000L, 0x80108000L, 0x00008000L, 0x80100000L, 0x80008000L, 0x00000020L, 0x80108020L, 0x00108020L, 0x00000020L, 0x00008000L, 0x80000000L, 0x00008020L, 0x80108000L, 0x00100000L, 0x80000020L, 0x00100020L, 0x80008020L, 0x80000020L, 0x00100020L, 0x00108000L, 0x00000000L, 0x80008000L, 0x00008020L, 0x80000000L, 0x80100020L, 0x80108020L, 0x00108000L }; static const DWORD SP3[64] = { 0x00000208L, 0x08020200L, 0x00000000L, 0x08020008L, 0x08000200L, 0x00000000L, 0x00020208L, 0x08000200L, 0x00020008L, 0x08000008L, 0x08000008L, 0x00020000L, 0x08020208L, 0x00020008L, 0x08020000L, 0x00000208L, 0x08000000L, 0x00000008L, 0x08020200L, 0x00000200L, 0x00020200L, 0x08020000L, 0x08020008L, 0x00020208L, 0x08000208L, 0x00020200L, 0x00020000L, 0x08000208L, 0x00000008L, 0x08020208L, 0x00000200L, 0x08000000L, 0x08020200L, 0x08000000L, 0x00020008L, 0x00000208L, 0x00020000L, 0x08020200L, 0x08000200L, 0x00000000L, 0x00000200L, 0x00020008L, 0x08020208L, 0x08000200L, 0x08000008L, 0x00000200L, 0x00000000L, 0x08020008L, 0x08000208L, 0x00020000L, 0x08000000L, 0x08020208L, 0x00000008L

相关推荐

最新推荐

Caesar,playfair,Des,AES,RSA等密码算法的实现

古典密码算法Caesar密码 3.古典密码算法Playfair密码 4.对称密码算法DES 5.对称密码算法AES 6.非对称密码算法RSA 7.HASH算法MD5 的实验报告,里面有详细的实验分析。其中大部分源码都是可以直接粘贴过去运行的。。

多图表实现员工满意度调查数据分析python

员工满意度是指员工对于工作环境、待遇、职业发展和组织管理等方面的满意程度。它是衡量员工对工作的整体感受和情绪状态的重要指标。

2020届软件工程本科毕业生毕业设计项目.zip

2020届软件工程本科毕业生毕业设计项目

基于stm32平衡小车

平衡小车 基于stm32 平衡小车 基于stm32 平衡小车 基于stm32

c语言火车票订票管理源码.rar

c语言火车票订票管理源码.rar

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

8155用作计时器该如何接线

8155是一种集成电路,可以作为计时器、计数器或者并行输入/输出设备使用。下面以将8155作为计时器为例,介绍一下其接线方法: 1. 将VCC引脚连接到正电源,将GND引脚连接到地线。 2. 将CLK引脚连接到一个外部时钟源。时钟源可以是一个晶体振荡器或者其他的时钟信号。 3. 将INTE引脚连接到一个外部中断请求信号。当计时器计数到设定的值时,将会产生一个中断请求信号。 4. 将CS引脚连接到电路中的一个控制信号,用来选择计时器模式或者输入/输出模式。 5. 将RD引脚连接到电路中的一个控制信号,用来读取计数器的值。 6. 将WR引脚连接到电路中的一个控制信号,用来写入计数器的值

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。