def adjustData(img,mask,flag_multi_class,num_class): if(flag_multi_class): img = img / 255 mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0] new_mask = np.zeros(mask.shape + (num_class,)) for i in range(num_class): #for one pixel in the image, find the class in mask and convert it into one-hot vector #index = np.where(mask == i) #index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i) #new_mask[index_mask] = 1 new_mask[mask == i,i] = 1 new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2])) mask = new_mask elif(np.max(img) > 1): img = img / 255 mask = mask /255 mask[mask > 0.5] = 1 mask[mask <= 0.5] = 0 return (img,mask)

时间: 2024-04-21 21:29:06 浏览: 120
这是一个用于对图像数据和标签数据进行预处理的函数,其中参数img和mask分别表示图像数据和标签数据,flag_multi_class表示是否为多分类问题,num_class表示分类数目。函数主要实现了以下功能: 1. 如果flag_multi_class为True,则将标签数据转换为one-hot编码形式,方便在多分类模型中使用。 2. 如果图像数据和标签数据的像素值都大于1,则将它们都归一化到0到1之间。 3. 将标签数据中像素值大于0.5的部分设置为1,小于等于0.5的部分设置为0,以得到二分类标签数据。 最后,函数将处理后的图像数据和标签数据作为元组返回。
相关问题

def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale", mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask", flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) #image_datagen中flow函数接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据。flow_from_directory函数以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据 image_generator = image_datagen.flow_from_directory( train_path, classes = [image_folder], class_mode = None, color_mode = image_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = image_save_prefix, seed = seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes = [mask_folder], class_mode = None, color_mode = mask_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = mask_save_prefix, seed = seed) train_generator = zip(image_generator, mask_generator) for (img,mask) in train_generator: img,mask = adjustData(img,mask,flag_multi_class,num_class) yield (img,mask)

这是一个生成器函数,用于生成训练集的数据。其中参数batch_size表示每次生成的数据量,train_path表示训练集路径,image_folder表示保存图像数据的文件夹,mask_folder表示保存标签数据的文件夹,aug_dict表示数据增强的参数字典,image_color_mode表示图像数据的颜色模式,mask_color_mode表示标签数据的颜色模式,image_save_prefix和mask_save_prefix分别表示保存图像和标签数据的前缀,flag_multi_class表示是否为多分类问题,num_class表示分类数目,save_to_dir表示保存增强后的图像和标签数据的路径,target_size表示图像和标签数据的尺寸大小,seed表示随机数种子。 该函数首先使用ImageDataGenerator生成图像和标签数据的生成器,然后调用flow_from_directory函数生成经过数据增强或归一化后的图像和标签数据。最后,该函数使用zip函数将图像数据生成器和标签数据生成器打包成一个可迭代的train_generator,并通过调用adjustData函数对图像和标签数据进行预处理,最终返回预处理后的图像和标签数据。整个过程是在一个无限循环中不断地生成数据。

def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale", mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask", flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) #image_datagen中flow函数接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据。flow_from_directory函数以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据 image_generator = image_datagen.flow_from_directory( train_path, classes = [image_folder], class_mode = None, color_mode = image_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = image_save_prefix, seed = seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes = [mask_folder], class_mode = None, color_mode = mask_color_mode, target_size = target_size, batch_size = batch_size, save_to_dir = save_to_dir, save_prefix = mask_save_prefix, seed = seed) train_generator = zip(image_generator, mask_generator) for (img,mask) in train_generator: img,mask = adjustData(img,mask,flag_multi_class,num_class) yield (img,mask)把这段代码中读取训练集img改成读取文件中的四张灰度图并合并为四通道图作为训练集

好的,我可以帮您修改这段代码来读取文件中的四张灰度图并将它们合并为一个四通道图像作为训练集。请参考下面的代码: ``` python import cv2 import numpy as np from keras.preprocessing.image import ImageDataGenerator def trainGenerator(batch_size, train_path, img_folder, mask_folder, aug_dict, img_color_mode="rgba", mask_color_mode="grayscale", img_save_prefix="image", mask_save_prefix="mask", flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' # 读取四个灰度图像并将它们合并为一个四通道图像 img1 = cv2.imread('img1.png', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('img2.png', cv2.IMREAD_GRAYSCALE) img3 = cv2.imread('img3.png', cv2.IMREAD_GRAYSCALE) img4 = cv2.imread('img4.png', cv2.IMREAD_GRAYSCALE) img = cv2.merge((img1, img2, img3, img4)) # 将图像转换为四通道 rgba 格式 img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGBA) # 构造 image_datagen 和 mask_datagen image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) # 使用 image_datagen 和 mask_datagen 生成数据 image_generator = image_datagen.flow(np.array([img]), batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=img_save_prefix, seed=seed) mask_generator = mask_datagen.flow_from_directory(train_path, classes=[mask_folder], class_mode=None, color_mode=mask_color_mode, target_size=target_size, batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=mask_save_prefix, seed=seed) # 将 image_generator 和 mask_generator 合并为一个 train_generator train_generator = zip(image_generator, mask_generator) # 循环遍历 train_generator 并返回调整后的数据 for (img, mask) in train_generator: img, mask = adjustData(img, mask, flag_multi_class, num_class) yield (img, mask) ``` 在上面的代码中,我们首先读取四个灰度图像并将它们合并为一个四通道图像。然后,我们将四通道图像转换为 RGBA 格式,以便与掩膜图像一起使用。接下来,我们使用 `ImageDataGenerator` 类构造了 `image_datagen` 和 `mask_datagen`,并使用它们分别生成四通道图像和掩膜图像的数据。最后,我们将 `image_generator` 和 `mask_generator` 合并为一个 `train_generator` 并循环遍历它,返回调整后的数据。
阅读全文

相关推荐

大家在看

recommend-type

2_JFM7VX690T型SRAM型现场可编程门阵列技术手册.pdf

复旦微国产大规模FPGA JFM7VX690T datasheet 手册 资料
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

DAQ97-90002.pdf

SCPI指令集 详细介绍(安捷伦)
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

Python中if __name__ == '__main__'作用解析

在Python编程语言中,`if __name__ == '__main__'` 是一个常见的代码结构,它的作用在于控制代码的执行时机。理解这个语句的作用对于编写可复用、模块化的Python程序至关重要。以下是对这个语句的详细解释。 首先,...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

def AUC(y_true, y_pred): not_y_pred = K.logical_not(y_pred) y_int1 = y_true * y_pred y_int0 = not_y_pred * not_y_pred TP = K.sum(y_pred * y_int1) FP = K.sum(y_pred) - TP TN = K.sum(not_y_pred * ...
recommend-type

如何基于python对接钉钉并获取access_token

if res.status_code == 200: str_res = res.text token = json.loads(str_res).get('access_token') return token ``` `get_token()`函数会返回HTTP响应的状态码,如果状态码为200,表示请求成功。接下来,我们...
recommend-type

Flask框架通过Flask_login实现用户登录功能示例

class User(UserMixin): def __init__(self, id, username): self.id = id self.username = username @login_manager.user_loader def load_user(user_id): # 从数据库加载用户 user = User.query.get(int...
recommend-type

keras的load_model实现加载含有参数的自定义模型

class SelfAttention Layer: def __init__(self, ch): # 初始化代码... def call(self, inputs): # 层的计算逻辑... # 保存模型 model.save('my_model.h5') # 加载模型,提供custom_objects参数 loaded_model...
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。