51单片机实验板上,用C语言编程实现符合以下功能的秒表计时器的设计。 1.该秒表计时器在0~59秒范围内循环计时,每次增加1秒。 2.当复位键有效时,该计时器清零后停止计时。 3.在复位键无效的前提下,当使能键有效时该计时器开始计时,当使能键无效时该计时器暂停计时。

时间: 2024-05-19 19:15:34 浏览: 13
这是一个关于51单片机实验板的技术问题,我可以帮您回答。该秒表计时器需要通过C语言编程实现,可以使用定时器中断来实现每秒增加1秒的计时功能。同时,需要对复位键和使能键进行判断,在复位键有效时清零并停止计时,在使能键有效时开始计时,在使能键无效时暂停计时。需要注意的是,具体实现方式可能会根据具体的硬件和编程环境有所差异。
相关问题

在51单片机实验板上,用C语言编程实现秒表计时器的设计。51单片机外接晶振频率为12MHz 为50ms的方波,由此产生秒表计时器的1秒时钟信号

这是一个典型的计时器的设计,实现步骤如下: 1. 首先,在程序中设置一个计时器寄存器,用于储存计时器的时间信息。 2. 接着,编写代码读取外部晶振频率为12MHz的方波,并以每50ms的间隔更新计时器寄存器。 3. 当计时器达到1秒时,触发一个中断,以此来更新秒表计时器的显示。 4. 最后,在程序中加入显示秒表计时器的代码,使得用户可以获得计时信息。 以下是一个C语言代码示例: #define FREQ 12000000 // 外部晶振频率 #define TIMER_INTERVAL 50 // 计时器间隔 volatile unsigned int timer_value = 0; void timer1_isr() interrupt 3 { // 定时器1中断函数 TH1 = TL1 = 0; // 重置定时器1 timer_value += TIMER_INTERVAL; // 更新计时器寄存器 if (timer_value >= 1000) { // 计时器达到1秒 timer_value = 0; // 重置计时器寄存器 // 触发更新秒表计时器显示的代码 } } void main() { TMOD = 0x10; // 设置定时器1为模式1 TH1 = TL1 = 0; // 重置定时器1 TR1 = 1; // 启动定时器1 EA = ET1 = 1; // 启动定时器1中断 while (1) {} // 一直循环 } 注意,以上代码是示例代码,具体实现还需根据实际情况进行调整。

在51单片机实验板上,用C语言编程实现符合以下功能的秒表计时器的设计。 1.该秒表计时器在0~59秒范围内循环计时,每次增加1秒。 2.当复位键有效时,该计时器清零后停止计时。 3.在复位键无效的前提下,当使能键有效时该计时器开始计时,当使能键无效时该计时器暂停计时。

很高兴回答你的问题!针对您的问题,我可以提供以下的代码实现: ``` #include <reg51.h> sbit enable = P3^0; // 使能键 sbit reset = P3^1; // 复位键 void delay_ms(unsigned int xms) { unsigned int i, j; for(i=xms; i>0; i--) for(j=112; j>0; j--); } void timer() { unsigned char seconds = 0; while(1) { if(reset == 0) // 复位键有效时清零后停止计时 { seconds = 0; TR0 = 0; // 停止计时器 while(reset == 0); // 等待复位键释放 } if(enable == 1) // 使能键有效时开始计时 { TR0 = 1; // 启动计时器 while(enable == 1) // 等待使能键失效 { if(TF0 == 1) // 计时器溢出时 { TF0 = 0; // 清除溢出标志 seconds++; // 秒数加1 if(seconds == 60) // 当秒数达到60时清零 seconds = 0; } delay_ms(10); // 延时10毫秒 } TR0 = 0; // 停止计时器 } } } void main() { TMOD = 0x01; // 定时器0工作在模式1 TH0 = 0x4C; // 定时器0计数初值 TL0 = 0x00; ET0 = 0; // 禁止定时器0中断 timer(); } ``` 这段代码使用定时器0来实现秒表计时器的功能,通过读取复位键和使能键的状态来控制计时器的启停和清零,同时实现了循环计时的功能。希望能对您有所帮助!

相关推荐

最新推荐

recommend-type

用软件延时实现00-59秒单片机计时器

在本设计中,我们使用AT89S51单片机来实现00-59秒单片机计时器的设计。 知识点8:硬件连接 硬件连接是指将单片机与外围硬件连接。在本设计中,我们使用8芯排线连接单片机与四路静态数码显示模块。 知识点9:电路...
recommend-type

单片机:c语言实现秒表计数(按键开始,结束,重置)

实现秒表计数功能,使用定时器和外部中断实现。8号按键代表计时开始/结束,C号按键代表重置为0,为了演示方便,这里上限定为15秒。
recommend-type

基于51单片机的电梯控制器设计方案.doc

本设计方案的主要目标是设计一个基于51单片机的电梯控制器,该控制器能够满足电梯的基本功能要求,包括楼层按钮、紧急呼叫按钮、开关门提示音和警报声等。同时,该设计方案还需要满足电梯的安全性和楼层限制要求。 ...
recommend-type

基于单片机篮球赛计时计分器毕业设计.doc

篮球比赛的计时计分系由计时器,计分器等多种电子设备组成,同时,根据目前高水平篮球比赛要求,完善的篮球比赛计时计分系统设备应能够与现场成绩处理,现场大屏幕,电视转播车等多种设备相联,以便实现高比赛现场感...
recommend-type

基于STC89C51单片机的出租车计费器设计

本文以单片机STC89C51 为核心设计一款出租车计费器, 使能够实现里程及对应价格的显示,由于采用芯片的自动定时计数,所以能够准确的计算出总的行车里程并能转换成对应的价格来,这样能够避免出租车司机作弊的可能性...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。