我要使用基于MobileNet_SSD和Caffe预训练模型检测图像中的对象的代码
时间: 2024-03-08 14:48:05 浏览: 109
好的,以下是基于MobileNet_SSD和Caffe预训练模型检测图像中的对象的示例代码:
```python
import cv2
import numpy as np
# 加载网络模型
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt', 'MobileNetSSD_deploy.caffemodel')
# 定义类别标签
classNames = { 0: 'background',
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor' }
# 加载图像
image = cv2.imread('image.jpg')
# 对图像进行预处理
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)
# 将预处理后的图像输入到网络中,得到预测结果
net.setInput(blob)
detections = net.forward()
# 遍历预测结果,绘制检测框
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
classId = int(detections[0, 0, i, 1])
className = classNames[classId]
x1 = int(detections[0, 0, i, 3] * image.shape[1])
y1 = int(detections[0, 0, i, 4] * image.shape[0])
x2 = int(detections[0, 0, i, 5] * image.shape[1])
y2 = int(detections[0, 0, i, 6] * image.shape[0])
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, className, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# 显示检测结果
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
需要注意的是,代码中的`MobileNetSSD_deploy.prototxt`和`MobileNetSSD_deploy.caffemodel`是MobileNet_SSD的预训练模型文件,需要根据实际情况进行替换。同时,预训练模型中定义的类别标签也需要根据实际情况进行修改。
阅读全文