python如何将数据集按照4:1比例划分训练集和测试集
时间: 2024-02-03 21:04:01 浏览: 82
可以使用 `sklearn` 中的 `train_test_split` 函数来划分训练集和测试集。具体步骤如下:
1. 导入所需模块和数据集
```python
from sklearn.model_selection import train_test_split
import numpy as np
# 假设数据集为 X 和 y
X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y = np.array([0, 0, 1, 1, 0, 1, 0, 1, 1, 0])
```
2. 使用 `train_test_split` 函数划分数据集
```python
# 划分比例为 4:1
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
其中,`test_size` 参数表示测试集占比,`random_state` 参数用于设置随机种子,确保每次运行结果相同。上述代码将数据集按照 4:1 的比例划分为训练集和测试集,其中训练集占比为 0.8,测试集占比为 0.2。
阅读全文