idea创建scala maven项目

时间: 2023-05-31 12:19:00 浏览: 130
### 回答1: 使用 IntelliJ IDEA 创建 Scala Maven 项目的步骤如下: 1. 打开 IntelliJ IDEA,选择 “Create New Project”。 2. 选择 “Maven” 模板。 3. 在 “Project SDK” 选项中选择已安装的 JDK 版本。 4. 在 “Project language level” 选项中选择 “Scala”。 5. 在 “Artifact” 选项中填入项目名称。 6. 点击 “Finish” 创建项目。 项目创建完成后,需要在 pom.xml 文件中添加 scala 依赖,如下 ``` <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.13.3</version> </dependency> ``` 同时也可以在setting->build->compiler->scala compiler中设置scala的版本 ### 回答2: 要创建一个Scala Maven项目,需要按照以下步骤操作: 1. 安装Scala和Maven 首先需要确保电脑已经安装了Scala和Maven。如果没有安装,可以参考相关文档进行安装。 2. 创建Maven项目 在命令行中运行以下命令: ``` mvn archetype:generate -DgroupId=com.example -DartifactId=myproject -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false ``` 这个命令会创建一个Maven项目,并生成一个初始的Java类。 3. 引入Scala依赖 在项目中的pom.xml文件中加入Scala相关的依赖: ```xml <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.13.0</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-compiler</artifactId> <version>2.13.0</version> <scope>provided</scope> </dependency> </dependencies> ``` 其中,scala-library是Scala标准库,scala-compiler是Scala编译器。 4. 编写Scala代码 在src/main/scala目录下创建Scala源代码文件,并编写相应的代码。 5. 编译打包 在命令行中运行以下命令进行编译打包: ``` mvn package ``` 这个命令会生成一个jar包,可以在target目录下找到。 以上就是创建一个Scala Maven项目的步骤。创建一个Scala Maven项目可以帮助我们更好地管理依赖和打包发布。 ### 回答3: 在创建Scala Maven项目之前,我们需要确保已经安装了Java和Maven,并且已经配置了环境变量。 接下来,我们可以通过以下步骤来创建Scala Maven项目: 1.打开终端或命令行界面,使用`mkdir`命令创建一个名为`scala-maven-project`的文件夹,该文件夹将包含我们的Scala Maven项目。 2.使用`cd`命令进入该文件夹。 3.使用Maven的`archetype:generate`命令来生成Scala项目。可以使用以下命令: ``` mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \ -DgroupId=com.example.scala \ -DartifactId=scala-maven-project \ -DarchetypeArtifactId=maven-archetype-quickstart \ -DinteractiveMode=false \ -DarchetypeVersion=1.4 ``` 其中,`-DgroupId`是项目的包名,`-DartifactId`是项目的名称,`-DarchetypeArtifactId`是要使用的Maven archetype。 4.在项目目录中,找到`src/main/scala`文件夹,用`vim`或其他文本编辑器打开`App.scala`文件。 5.编写Scala代码,例如: ``` object App { def main(args: Array[String]): Unit = { println("Hello, Scala!") } } ``` 6.在项目目录中,执行`mvn compile`命令,以编译Scala代码并生成类文件。 7.执行`mvn package`命令,以将Scala类文件打包为可执行的jar文件。 8.在`target`目录中找到生成的jar文件,例如`scala-maven-project-1.0-SNAPSHOT.jar`。 9.执行`java -jar target/scala-maven-project-1.0-SNAPSHOT.jar`命令,以运行Scala程序。 这样,我们就可以成功创建Scala Maven项目,并用Scala语言编写了一个简单的Hello World程序,并成功打包为可执行的jar文件。 可以通过执行`java -jar`命令来运行该程序。

相关推荐

### 回答1: 创建基于Scala语言的Spark Maven项目: 1. 打开IntelliJ IDEA,点击“Create New Project”。 2. 选择“Maven”作为项目类型,点击“Next”。 3. 输入项目名称和项目路径,点击“Next”。 4. 选择Scala版本和Spark版本,点击“Next”。 5. 选择项目的groupId和artifactId,点击“Next”。 6. 点击“Finish”完成项目创建。 WordCount程序: 1. 在src/main/scala目录下创建一个WordCount.scala文件。 2. 在文件中输入以下代码: import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("WordCount").setMaster("local") val sc = new SparkContext(conf) val input = sc.textFile("input.txt") val words = input.flatMap(line => line.split(" ")) val counts = words.map(word => (word, 1)).reduceByKey(_ + _) counts.foreach(println) } } 3. 在项目根目录下创建一个input.txt文件,并输入一些文本内容。 4. 运行WordCount程序,可以在控制台看到单词统计结果。 ### 回答2: 在创建基于Scala语言的Spark Maven项目及WordCount应用之前,需要先安装以下软件: 1. Java JDK 2. Scala 3. Apache Maven 4. Apache Spark 接下来,按照以下步骤创建项目: 1. 打开终端并创建一个新目录,用于存储Spark项目。 mkdir spark-project cd spark-project 2. 创建一个新的Maven项目,使用以下命令: mvn archetype:generate -DgroupId=com.sparkproject -DartifactId=wordcount -DarchetypeArtifactId=maven-archetype-quickstart -DscalaVersion=2.11.7 这个命令会使用Maven的Quickstart模板创建一个基本的Maven项目。在此过程中,你需要输入要创建的组ID、项目ID和Scala版本。 3. 打开pom.xml文件并添加Spark依赖库。 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.4.5</version> </dependency> 这个依赖库将帮助我们在Maven项目中导入Spark库。 4. 创建一个新的Scala源代码文件WordCount.scala。 package com.sparkproject import org.apache.spark._ import org.apache.spark.SparkContext._ object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("WordCount") val sc = new SparkContext(conf) val textFile = sc.textFile(args(0)) val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile(args(1)) } } 这个代码将使用Spark来计算文本文件中单词的出现次数。它主要使用了Spark的RDD(Resilient Distributed Datasets)API。 5. 使用以下命令将Maven项目打包: mvn package 6. 使用以下命令在Spark集群上运行WordCount应用程序。 ../bin/spark-submit --class "com.sparkproject.WordCount" --master local wordcount-1.0-SNAPSHOT.jar /path/to/input/files /path/to/output/directory 这个命令将使用Spark的spark-submit命令启动WordCount应用程序。其中,/path/to/input/files是要处理的文本文件路径,/path/to/output/directory是将缓存结果输出的目录路径。 总结: 通过上述步骤,我们创建了一个基于Scala语言的Spark Maven项目,并构建了一个WordCount应用程序来演示如何使用Spark来处理文本数据。这个示例代码可用于提供Spark在更复杂数据分析场景下的能力。 ### 回答3: Apache Spark是一个开源的大数据处理框架,它使用分布式计算的方式实现高效的数据处理,支持多种语言,其中Scala是最为常用的语言之一。Maven是一个流行的构建工具,提供了一种简单的方式管理项目的依赖,方便项目管理和部署。在本文中,我们将介绍如何使用Scala和Maven创建一个Spark Maven项目并实现一个简单的WordCount程序。 首先,我们需要安装Scala和Maven。如果您已经安装并配置好了,可以跳过这一步骤。首先安装Scala,可以到Scala的官网下载安装包,也可以使用命令行安装。安装完成后,需要确认是否正确地配置了系统的环境变量。 然后安装Maven。可以从Maven的官网下载安装包,也可以使用命令行安装。安装完成后同样需要确认是否正确地配置了系统的环境变量。 接下来,我们开始创建一个Maven项目。首先打开命令行窗口,使用以下命令创建一个基于Scala的Spark Maven项目: mvn archetype:generate -DgroupId=com.spark.scala -DartifactId=wordcount -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false -DarchetypeCatalog=local 该命令将创建一个名为“wordcount”的Maven项目,在项目的根目录中,有一个包含Java代码的src/main/java目录,和一个包含测试代码的src/test/java目录。 接下来,我们需要在项目的pom.xml文件中添加Spark和Scala的依赖。在pom.xml文件中,添加以下代码: <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.4.5</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.11.12</version> </dependency> </dependencies> 此时我们已经创建好了一个基于Scala的Spark Maven项目,接下来我们实现一个简单的WordCount程序。 首先,在src/main/scala目录中创建一个名为“WordCount”的Scala文件,添加以下代码: import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]) { val conf = new SparkConf() .setAppName("WordCount") .setMaster("local[2]") val sc = new SparkContext(conf) val input = sc.textFile(args(0)) val words = input.flatMap(line => line.split(" ")) val counts = words.map(word => (word, 1)).reduceByKey(_ + _) counts.saveAsTextFile(args(1)) sc.stop() } } 该程序使用Spark的API,首先创建了一个SparkConf对象和一个SparkContext对象,设置了应用程序的名称和运行模式。然后使用textFile方法从输入文件中读取数据,使用flatMap方法将每一行数据解析成单词,再使用map和reduceByKey方法计算单词的出现频率。最后使用saveAsTextFile方法将结果保存到输出文件中,并关闭SparkContext。 接下来,我们在命令行中运行该程序。首先将文本文件(例如input.txt)复制到项目的根目录中,然后使用以下命令运行程序: mvn exec:java -Dexec.mainClass="WordCount" -Dexec.args="input.txt output" 此时程序将输出结果保存在output目录中。 综上所述,我们使用Scala和Maven创建了一个基于Spark的Maven项目,并实现了一个简单的WordCount程序。这个过程中,对于初学者来说可能存在一些困难,但随着对Spark和Scala的深入了解,这些问题都可以轻松解决。
下面是搭建idea+maven+spark+scala项目的步骤: 1. 安装JDK和Scala环境。 2. 安装Maven。 3. 在IDEA中创建Maven项目。 4. 在pom.xml文件中添加依赖,包括Spark和Scala相关依赖。 5. 在src/main/scala目录下创建Scala文件。 6. 编写Spark程序。 7. 运行程序。 具体步骤如下: 1. 安装JDK和Scala环境 首先需要安装Java开发工具包(JDK),并配置环境变量。然后安装Scala编程语言,同样也需要配置环境变量。可以参考官网的安装说明进行操作。 2. 安装Maven Maven是一个Java项目管理工具,可以自动下载所需的依赖库,并将项目打包成Jar包。可以从官网下载Maven,并配置环境变量。 3. 在IDEA中创建Maven项目 在IDEA中创建Maven项目,选择Scala模板,填写项目名称、groupId、artifactId等信息。IDEA会自动生成pom.xml文件。 4. 在pom.xml文件中添加依赖 在pom.xml文件中添加Spark和Scala相关依赖,例如: <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.4.5</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>2.4.5</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.11.8</version> </dependency> </dependencies> 5. 在src/main/scala目录下创建Scala文件 在src/main/scala目录下创建Scala文件,例如: object Test { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Test").setMaster("local[*]") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) val df = sqlContext.read.json("data/people.json") df.show() } } 6. 编写Spark程序 在Scala文件中编写Spark程序,例如读取JSON文件并显示数据。 7. 运行程序 在IDEA中运行程序,即可看到Spark程序的输出结果。 以上就是搭建idea+maven+spark+scala项目的步骤。
### 回答1: Spark开发环境搭建基于IDEA和Maven,可以按照以下步骤进行: 1. 安装Java JDK和Maven,并配置环境变量。 2. 下载并安装IDEA,打开IDEA,选择File -> New -> Project,选择Maven,输入项目名称和路径,点击Next。 3. 选择Maven的groupId、artifactId和version,点击Next。 4. 选择项目的存储位置和项目类型,点击Next。 5. 配置项目的依赖,包括Spark、Hadoop、Scala等,点击Finish。 6. 在IDEA中创建Spark应用程序,编写代码,进行调试和运行。 Maven打包jar包的两种方式: 1. 使用Maven命令行打包:在项目根目录下执行命令“mvn package”,Maven会自动编译、打包并生成jar包。 2. 在IDEA中使用Maven插件打包:在IDEA中打开Maven Projects面板,选择项目,右键选择“package”,Maven会自动编译、打包并生成jar包。 ### 回答2: spark开发环境搭建(基于idea和maven) Spark是目前最流行的大数据处理框架之一,它可以在分布式环境下高效地处理海量数据。本文将介绍如何在IDEA和Maven的基础上搭建Spark开发环境。 1. 下载和安装Java SDK和Scala 首先需要从官网下载并安装Java SDK和Scala,这样才能正常使用Spark。 2. 下载和安装IDEA 然后下载,安装并启动IDEA(建议使用最新版本),准备创建一个新的Maven项目。 3. 创建Maven项目 在IDEA中点击File -> New -> Project,在创建项目的窗口中选择Maven,然后填写项目名称、GroupId、ArtifactId等信息,创建一个Maven项目。 4. 引入Spark依赖 在Maven的pom.xml文件中引入Spark的依赖: xml <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>2.4.5</version> </dependency> </dependencies> 这里选择了Spark Core的依赖,如果需要使用其他的Spark组件,在引入依赖时也需要添加相应的组件。 5. 测试代码的编写 在src/main/scala目录下新建一个Scala文件,编写测试代码并运行,如果没有报错,证明环境搭建成功。 Maven打包jar包的两种方式 在完成了Spark开发任务后,需要将代码打包成jar包以便于在集群上运行。下面介绍两种方式来将Maven项目打包成jar包。 1. 通过Maven命令行打包 在Maven的根目录下打开命令行,使用以下命令进行打包: mvn package 执行完上述命令后,在target目录下会生成一个jar包,可以将这个jar包上传到集群上进行运行。 2. 在IDEA中进行打包 在IDEA中,可以直接使用Maven插件打包,步骤如下: Step 1: 打开Maven Projects界面,在Lifecycle中,双击package. Step 2: 等待成功之后,就会在target目录下生成jar包。 使用这种方式打包会更加方便,因为可以直接在开发环境中打包并运行测试。但是,在实际部署时还是需要将jar包上传到集群上运行。 ### 回答3: 随着大数据技术的发展,越来越多的企业开始采用Spark进行数据分析和处理。在使用Spark进行开发工作前,首先需要进行开发环境的搭建。本文将介绍如何在IDEA和Maven的基础上搭建Spark开发环境,并探讨Maven打包jar包的两种方式。 一、Spark开发环境搭建 1. 安装Java和Scala 首先需要安装Java和Scala。目前最新的Java版本为Java 8,而Spark最好使用Scala语言进行开发。我们可以下载Java和Scala,也可以使用brew直接进行安装。 2. 下载安装IDEA IDEA是一个Java语言开发的集成开发环境。我们可以到官方网站下载安装。 3. 下载安装Spark 通过Spark的官方网站下载安装Spark。 4. 配置环境变量 将Spark的bin目录和Java的bin目录添加到PATH环境变量中。 5. 使用IDEA创建Spark项目 在IDEA中创建一个Maven项目,并指定Spark相关的依赖。 6. 运行Spark应用 通过IDEA的运行配置,可以轻松地启动Spark应用程序。 二、Maven打包jar包的两种方式 在开发过程中,我们通常需要打包jar包进行部署。下面介绍Maven打包jar包的两种方式。 1. 常规方式 通过Maven的命令行界面,可以轻松地通过命令进行打包。 打包命令如下: mvn package 2. 通过插件方式打包 通过Maven插件的方式还可以进行打包。 打包命令如下: mvn clean compile assembly:single 通过以上方法,我们可以轻松地搭建好Spark开发环境,并使用Maven进行打包,便于部署应用程序。
使用Intellij IDEA开发Spark应用程序的步骤如下: 1. 在Intellij IDEA中安装Scala插件,并重启IDEA。这可以通过在IDEA的插件市场搜索Scala并进行安装来完成。 2. 创建一个Maven项目,选择Scala语言,并添加Spark和HBase的依赖。在Intellij IDEA中,可以通过选择"New Project"来创建一个新的Maven项目,并在项目配置中添加所需的依赖。 3. 配置Scala SDK。在Intellij IDEA中,需要添加Scala SDK,并为项目添加Scala支持。这可以通过在IDEA的设置中选择"Project Structure",然后在"Libraries"选项卡中添加Scala SDK来完成。 4. 编写Spark应用程序。在src/main/scala目录下创建一个Scala对象,并编写Spark代码。你可以使用Spark的API来进行数据处理和分析。 5. 打包和运行Spark项目。在本地模式下测试Spark应用程序,可以通过运行Scala对象的main方法来执行代码。然后,将应用程序打包成jar包,并上传到虚拟机中的master节点。最后,使用spark-submit命令将jar包提交到Spark集群中运行。 如果你是在Windows系统上进行开发,你可以按照以下步骤来配置IDEA的Spark开发环境: 1. 下载Spark-hadoop的文件包,例如spark-2.4.5-bin-hadoop2.7,你可以从Spark官网(http://spark.apache.org/downloads.html)下载。 2. 下载和安装Scala语言的开发插件。在Intellij IDEA中,你可以通过插件市场搜索Scala并进行安装,并重启IDEA。 3. 下载Scala的包,并将其配置到IDEA中。你可以从Scala官网下载Scala的二进制发行版,并将其添加到IDEA的设置中。具体的配置步骤可以参考Scala官方文档或相关教程。 综上所述,使用Intellij IDEA进行Spark应用程序的开发和调试相对简单,同时可以提供强大的开发环境和调试功能,方便开发人员进行Spark应用程序的开发和测试。123 #### 引用[.reference_title] - *1* *3* [Intellij IDEA编写Spark应用程序的环境配置和操作步骤](https://blog.csdn.net/weixin_40694662/article/details/131172915)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Windows下配置IDEA的Spark的开发环境](https://download.csdn.net/download/weixin_38546608/14886446)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
IDEA与Spark的开发环境配置包括以下几个步骤: 第一步是下载并安装Spark和Hadoop的文件包。你可以在Spark官方网站上下载最新的Spark-hadoop文件包 。 第二步是在IDEA中安装Scala插件,并重启IDEA。这可以通过在IDEA的插件市场中搜索Scala来完成。 第三步是创建一个Maven项目,并选择Scala语言。在创建项目时,还需要添加Spark和HBase的依赖 。 第四步是配置Scala SDK,并将其添加到项目中,以便为项目添加Scala支持。可以在IDEA的设置中找到Scala SDK的配置选项。 第五步是在src/main/scala目录下创建一个Scala对象,并编写Spark代码。这样你就可以开始开发Spark应用程序了。 最后一步是测试Spark应用程序。在本地模式下运行测试,并确保应用程序能够正常工作。然后将应用程序打包成jar包,并上传到虚拟机中的master节点。使用spark-submit命令将jar包提交到集群进行运行。 这些步骤将帮助你在IDEA中配置和搭建Spark的开发环境,让你可以方便地进行Spark应用程序的开发和调试。123 #### 引用[.reference_title] - *1* *3* [Intellij IDEA编写Spark应用程序的环境配置和操作步骤](https://blog.csdn.net/weixin_40694662/article/details/131172915)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Windows下配置IDEA的Spark的开发环境](https://download.csdn.net/download/weixin_38546608/14886446)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
在IDEA中配置Spark环境可以按照以下步骤进行操作: 1. 首先,确保你已经安装了Scala插件包,并且创建了一个新的Maven工程。你可以选择使用org.scala-tools.archetypes:scala-archetype-simple作为Maven工程的模板\[3\]。 2. 在Project Structure中检查Global Libraries,确保scala工具包的版本是scala-sdk-2.11.12。如果不是正确的版本,需要移除错误的版本\[3\]。 3. 修改pom.xml文件,将scala.version设置为2.11.12,并添加Spark的依赖。你可以在Maven仓库中搜索Spark Project Core和Spark Project SQL的依赖,并选择适合你的Spark版本(比如2.4.5)和Scala版本(比如2.11)\[3\]。 4. 在新建的Maven工程中,创建一个scala文件,例如DemoSpark.scala。在该文件中,你可以编写一个简单的Spark操作命令,如下所示: scala import org.apache.spark.{SparkConf, SparkContext} object DemoSpark { def main(args: Array\[String\]): Unit = { val conf: SparkConf = new SparkConf().setMaster("local\[2\]").setAppName("hellospark") val sc: SparkContext = SparkContext.getOrCreate(conf) println(sc) } } 这个示例代码创建了一个SparkConf对象,设置了本地运行模式和应用程序名称,然后通过SparkContext来获取Spark的上下文对象\[2\]。 通过按照以上步骤配置好环境,你就可以在IDEA中运行Spark程序了。希望这些步骤对你有帮助! #### 引用[.reference_title] - *1* [在IDEA里运行spark](https://blog.csdn.net/l_dsj/article/details/109468288)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [[Spark] 手把手教你在IDEA中搭建Spark环境](https://blog.csdn.net/brave_zhao/article/details/105714286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

idea 无法创建Scala class 选项的原因分析及解决办法汇总

主要介绍了idea 无法创建Scala class 选项的解决办法汇总,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

scala API 操作hbase表

最近看了hbase的源码根据源码写了一些scala调动hbase表的API,话不多说直接上代码!...并且在scala,maven项目中,还有创建一个resources包(这个网上多的是)主要是放core-site,xml和hdfs-site.xml以及hbase-site.xml

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

网上电子商城系统的数据库设计

网上电子商城系统的数据库设计需要考虑以下几个方面: 1. 用户信息管理:需要设计用户表,包括用户ID、用户名、密码、手机号、邮箱等信息。 2. 商品信息管理:需要设计商品表,包括商品ID、商品名称、商品描述、价格、库存量等信息。 3. 订单信息管理:需要设计订单表,包括订单ID、用户ID、商品ID、购买数量、订单状态等信息。 4. 购物车管理:需要设计购物车表,包括购物车ID、用户ID、商品ID、购买数量等信息。 5. 支付信息管理:需要设计支付表,包括支付ID、订单ID、支付方式、支付时间、支付金额等信息。 6. 物流信息管理:需要设计物流表,包括物流ID、订单ID、物流公司、物

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

三因素方差分析_连续变量假设检验 之 嵌套设计方差分析

嵌套设计方差分析是一种特殊的因素方差分析,用于分析一个因素(通常为被试或处理)在另一个因素(通常为场所或时间)内的变化。在嵌套设计中,因素A被嵌套在因素B的水平内,即因素B下的每个水平都有不同的A水平。例如,考虑一个实验,其中有4个医生(作为因素A)治疗了10个患者(作为因素B),每个医生治疗的患者不同,因此医生是嵌套因素。 嵌套设计方差分析的假设包括: - 常规假设:总体均值相等; - 固定效应假设:各水平下的均值相等; - 随机效应假设:各水平下的均值随机变化。 在嵌套设计方差分析中,我们需要计算三个因素:被试、场所和被试在场所内的误差。计算方法与经典的三因素方差分析类似,只是需要注

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5