如何证明一个二元调和函数的任意阶偏导数也是调和函数?
时间: 2023-08-27 07:04:21 浏览: 179
2-3调和函数.pdf
一个二元调和函数 $u(x,y)$ 满足以下条件:$$\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$$
现在我们来证明一个二元调和函数的任意阶偏导数也是调和函数。我们首先考虑二阶偏导数:$$\frac{\partial^2}{\partial x^2}\Big(\frac{\partial u}{\partial x}\Big)+\frac{\partial^2}{\partial y^2}\Big(\frac{\partial u}{\partial x}\Big)=\frac{\partial}{\partial x}\Big(\frac{\partial^2 u}{\partial x^2}\Big)+\frac{\partial}{\partial y}\Big(\frac{\partial^2 u}{\partial x\partial y}\Big)$$
由于 $u(x,y)$ 是调和函数,所以 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$,因此:$$\frac{\partial^2}{\partial x^2}\Big(\frac{\partial u}{\partial x}\Big)+\frac{\partial^2}{\partial y^2}\Big(\frac{\partial u}{\partial x}\Big)=\frac{\partial}{\partial x}\Big(\frac{\partial^2 u}{\partial x^2}\Big)+\frac{\partial}{\partial y}\Big(\frac{\partial^2 u}{\partial x\partial y}\Big)=\frac{\partial}{\partial x}\Big(-\frac{\partial^2 u}{\partial y^2}\Big)+\frac{\partial}{\partial y}\Big(\frac{\partial^2 u}{\partial x\partial y}\Big)=0$$
因此,$\frac{\partial^2}{\partial x^2}\Big(\frac{\partial u}{\partial x}\Big)+\frac{\partial^2}{\partial y^2}\Big(\frac{\partial u}{\partial x}\Big)=0$,也就是说,$\frac{\partial^2 u}{\partial x^2}$ 是一个调和函数。
同理,我们可以证明任意阶偏导数都是调和函数。因此,一个二元调和函数的任意阶偏导数也是调和函数。
阅读全文