用pytorch写一段代码:以西储大学CWRU轴承故障的振动信号数据库作为模型的训练集,故障类型标签包括:正常、内圈故障、外圈故障和滚动体故障四类。首先将一维故障信号转换为二维灰度图作为CNN模型的输...
时间: 2024-02-17 15:01:55 浏览: 114
好的,以下是用 PyTorch 实现将一维故障信号转换为二维灰度图并用 CNN 模型进行训练的代码:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import numpy as np
import matplotlib.pyplot as plt
# 定义转换器,将一维信号转换为二维灰度图
class ToGrayscale(object):
def __call__(self, x):
x = np.array(x) # 将一维信号转换为 numpy 数组
x = np.tile(x, (64, 1)) # 复制成 64 行,得到一个 64*len(x) 的数组
x = (x - x.min()) / (x.max() - x.min()) # 归一化到 [0, 1] 的范围内
x = np.uint8(x * 255) # 将像素值映射到 [0, 255] 的范围内
x = np.expand_dims(x, axis=2) # 增加一个维度,变成 64*len(x)*1 的数组
return x
# 加载数据集
train_transform = transforms.Compose([
ToGrayscale(),
transforms.ToTensor()
])
train_dataset = ImageFolder(root='path/to/dataset', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 定义模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32*16*16, 128)
self.fc2 = nn.Linear(128, 4)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 32*16*16)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
model = CNN()
# 定义优化器和损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}')
# 评估模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in train_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the model on the {len(train_dataset)} train images: {100 * correct / total}%')
```
这段代码的主要思路是:首先定义一个转换器将一维信号转换为二维灰度图,然后使用 `ImageFolder` 类加载数据集,并应用转换器将数据集中的每个样本转换为二维灰度图。接着定义一个简单的 CNN 模型,并使用交叉熵损失函数和 Adam 优化器进行训练。最后评估模型的准确率。
阅读全文