使用pytorch实现在图像上单机鼠标截取两个相同尺寸的区域并利用孪生神经网络度量其相似性,输出实现代码
时间: 2024-02-06 20:10:00 浏览: 127
基于Python孪生神经网络实现图片的相似性比较【100011336】
以下是一个简单的实现示例,使用PyTorch和OpenCV库:
```python
import cv2
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
# 定义孪生神经网络
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=10),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=7),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(128, 128, kernel_size=4),
nn.ReLU(inplace=True),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=4),
nn.ReLU(inplace=True),
)
self.fc = nn.Sequential(
nn.Linear(9216, 4096),
nn.Sigmoid()
)
def forward(self, x1, x2):
out1 = self.cnn(x1)
out2 = self.cnn(x2)
out1 = out1.view(out1.size()[0], -1)
out2 = out2.view(out2.size()[0], -1)
out1 = self.fc(out1)
out2 = self.fc(out2)
return out1, out2
# 定义损失函数
class ContrastiveLoss(nn.Module):
def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = nn.functional.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive
# 加载预训练模型
model = SiameseNetwork()
model.load_state_dict(torch.load('siamese.pth'))
# 图像预处理
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 读取图像
img1 = cv2.imread('img1.jpg')
img2 = cv2.imread('img2.jpg')
# 截取两个相同尺寸的区域
r1 = cv2.selectROI(img1)
r2 = cv2.selectROI(img2)
img1_crop = img1[int(r1[1]):int(r1[1]+r1[3]), int(r1[0]):int(r1[0]+r1[2])]
img2_crop = img2[int(r2[1]):int(r2[1]+r2[3]), int(r2[0]):int(r2[0]+r2[2])]
# 预处理图像
img1_crop = transform(img1_crop).unsqueeze(0)
img2_crop = transform(img2_crop).unsqueeze(0)
# 将图像输入模型
output1, output2 = model(img1_crop, img2_crop)
# 计算相似度
distance = nn.functional.pairwise_distance(output1, output2)
print('两个图像的相似度为:', distance.item())
```
需要注意的是,上面的代码只是一个简单的示例,实际上在孪生神经网络的训练和测试过程中还有很多需要优化的细节。同时,如果你想使用更先进的模型或者数据增强方法来提高模型的性能,也可以参考相关的研究论文和开源实现。
阅读全文