重庆市云阳县P-center问题的学校选址的数学建模及gurobipy编码
时间: 2024-03-05 21:55:04 浏览: 139
重庆市云阳县P-Center问题的学校选址可以通过以下步骤进行数学建模和gurobipy编码:
1. 确定需求点和服务点:需求点是学生和家长的居住地,服务点是学校的候选位置。
2. 确定距离度量方法:可以使用欧几里得距离或曼哈顿距离来度量需求点和服务点之间的距离。
3. 确定P值:P值是指需要覆盖的需求点数量,可以根据实际情况来确定。
4. 建立数学模型:P-Center问题可以表示为一个最小化问题,即最小化服务点和需求点之间的最大距离。具体而言,可以使用以下数学模型:
Minimize max(d(i,j))
subject to
sum(y(j)) = P
y(j) ∈ {0,1}
x(i,j) ∈ {0,1}
d(i,j) = distance between demand point i and candidate facility j
where
y(j) is a binary variable indicating whether to build a facility at candidate site j
x(i,j) is a binary variable indicating whether demand point i is assigned to facility j
5. 编写gurobipy代码:可以使用gurobipy来解决P-Center问题。下面是一个简单的代码示例:
```python
import gurobipy as gp
from gurobipy import GRB
# Input data
demand_points = [(109.5163,30.9315), (108.6970,29.8465), (109.9387,30.7121), (108.8347,31.9367)] # 需求点坐标
candidate_facilities = [(110.9834,30.8278), (110.9445,31.1303), (110.5027,30.7109)] # 候选位置坐标
P = 2 # 需要覆盖的需求点数量
# Create model
m = gp.Model("P-Center Problem")
# Create decision variables
y = m.addVars(candidate_facilities, vtype=GRB.BINARY, name="Facility")
x = m.addVars(demand_points, candidate_facilities, vtype=GRB.BINARY, name="Assignment")
# Create objective function
m.setObjective(gp.max_([gp.min_([gp.quicksum([x[(i,j)]*distance(i,j) for i in demand_points]) for j in candidate_facilities if y[(j)].x == 1.0]) for j in candidate_facilities]), GRB.MINIMIZE)
# Create constraints
m.addConstr(gp.quicksum([y[(j)] for j in candidate_facilities]) == P)
for i in demand_points:
m.addConstr(gp.quicksum([x[(i,j)]*y[(j)] for j in candidate_facilities]) == 1)
# Solve problem
m.optimize()
# Print results
print("Objective value:", m.objVal)
for j in candidate_facilities:
if y[(j)].x == 1.0:
print("Facility at", j)
for i in demand_points:
for j in candidate_facilities:
if x[(i,j)].x == 1.0:
print("Demand point", i, "assigned to facility at", j)
```
在上面的代码中,`distance(i,j)`表示需求点i和候选位置j之间的距离。需要根据使用的距离度量方法进行相应的实现。运行代码后,可以得到最优的学校选址方案,以及每个需求点分配到的学校。
阅读全文