参考第8章PPT(P14),抽象类包含抽象方法。 (1)写出程序代码(2)写出运行结果。(3)能否构造一个抽象类的实例。C#
时间: 2024-12-19 08:17:48 浏览: 6
在 C# 中,抽象类是一种特殊的类,它包含至少一个抽象方法,即没有具体实现的方法。抽象方法由 `abstract` 关键字修饰,并且没有方法体。创建抽象类的实例是不可能的,因为它们通常作为其他非抽象类的基类,用于共享功能和提供模板。
这里是一个简单的例子:
```csharp
// 定义一个抽象类 Animal
public abstract class Animal
{
public abstract void Sound();
}
// 具体的抽象方法实现 - 子类 Dog
public class Dog : Animal
{
public override void Sound()
{
Console.WriteLine("Woof!");
}
}
// 具体的抽象方法实现 - 子类 Cat
public class Cat : Animal
{
public override void Sound()
{
Console.WriteLine("Meow!");
}
}
// 运行时,不能直接创建抽象类的实例
// 抽象类不能被实例化,所以下面这行会报错
// var animal = new Animal();
// 但是可以创建子类的实例并调用抽象方法
var dog = new Dog();
dog.Sound(); // 输出 "Woof!"
var cat = new Cat();
cat.Sound(); // 输出 "Meow!"
```
相关问题
3.5 编写程序,读入一个整数,输出这个整数的位数。 练习: 创建第一个项目,编写、编译源文件,并运行。 (详见教材P14-15) 三种读代码的方法:(1)画表格;(2)程序输出中间结果;(3)deb
在编程中,如果你需要计算一个整数的位数,你可以通过遍历数字并检查每一位是否为0来实现。这是一个简单的步骤过程:
1. **接收输入**:首先,从用户或控制台读取一个整数值。例如,在Python中可以使用`input()`函数获取字符串形式的输入,然后转换成整数。
```python
num = int(input("请输入一个整数:"))
```
2. **初始化计数器**:设置一个变量来记录位数,初始值设为0。
3. **循环判断**:通过循环,从低位到高位检查每一位。如果当前位非零,计数器加一。
```python
# Python示例:
count = 0
while num > 0:
count += 1
num //= 10
```
4. **输出结果**:最后返回计数器的值,即为该整数的位数。
```python
print(f"该整数有{count}位")
```
**练习步骤总结**:
- 创建一个新的Python文件(如`count_digits.py`),编写上述代码。
- 使用命令行工具(如`python count_digits.py`)运行程序。
- 输入一个整数,程序将输出该整数的位数。
**其他方法**:
- **画表格**:可以不用编写代码,而是手动创建一个表格来展示数字及其对应的位数。
- **程序输出中间结果**:在循环过程中逐次打印出当前位和剩余位数。
- **debugging** (调试):确保在处理大数时不会溢出,以及边界条件的正确性,比如负数的位数处理等。
根据下列给定的14个数据,运用Information Gain构造一个天气决策树。例子编号属 性分类天况温度湿度风况1晴热大无N2晴热大有N3多云热大无P4雨中大无P5雨冷正常无P6雨冷正常有N7多云冷正常有P8晴中大无N9晴冷正常无P10雨中正常无P11晴中正常有P12多云中大有P13多云热正常无P14雨中大有N,写出python代码,100行左右
好的,下面是使用Python实现的天气决策树代码,共计100行左右:
```python
import pandas as pd
import numpy as np
# 定义计算信息熵的函数
def calc_entropy(data):
labels = data.iloc[:, -1]
unique_labels = labels.unique()
label_counts = labels.value_counts()
entropy = 0
for label in unique_labels:
prob = label_counts[label] / len(labels)
entropy -= prob * np.log2(prob)
return entropy
# 定义计算信息增益的函数
def calc_info_gain(data, feature):
entropy_total = calc_entropy(data)
feature_values = data[feature].unique()
entropy_feature = 0
for value in feature_values:
sub_data = data[data[feature] == value]
prob = len(sub_data) / len(data)
entropy_feature += prob * calc_entropy(sub_data)
info_gain = entropy_total - entropy_feature
return info_gain
# 定义递归构建决策树的函数
def create_decision_tree(data, features):
# 如果数据集中所有样本属于同一类别,则直接返回该类别
if len(data.iloc[:, -1].unique()) == 1:
return data.iloc[0, -1]
# 如果所有属性都已经被用来划分数据集,则返回数据集中样本数最多的类别
if len(features) == 0:
return data.iloc[:, -1].value_counts().idxmax()
# 计算信息增益,并选择信息增益最大的属性作为划分属性
info_gains = []
for feature in features:
info_gain = calc_info_gain(data, feature)
info_gains.append(info_gain)
best_feature_index = np.argmax(info_gains)
best_feature = features[best_feature_index]
# 基于划分属性,递归构建决策树
decision_tree = {best_feature: {}}
values = data[best_feature].unique()
for value in values:
sub_data = data[data[best_feature] == value]
sub_features = features.drop(best_feature)
decision_tree[best_feature][value] = create_decision_tree(sub_data, sub_features)
return decision_tree
# 定义预测函数
def predict(decision_tree, sample):
if isinstance(decision_tree, str):
return decision_tree
for feature in decision_tree.keys():
value = sample[feature]
sub_tree = decision_tree[feature][value]
return predict(sub_tree, sample)
# 加载数据集
data = pd.read_csv('weather.csv')
features = data.columns[:-1]
# 构建决策树
decision_tree = create_decision_tree(data, features)
# 输出决策树
print(decision_tree)
# 预测样本分类
sample = {'天况': '晴', '温度': '热', '湿度': '大', '风况': '无'}
prediction = predict(decision_tree, sample)
print('样本分类为:', prediction)
```
其中,数据集`weather.csv`的内容为:
```
天况,温度,湿度,风况,分类
晴,热,大,无,N
晴,热,大,有,N
多云,热,大,无,P
雨,中,大,无,P
雨,冷,正常,无,P
雨,冷,正常,有,N
多云,冷,正常,有,P
晴,中,大,无,N
晴,冷,正常,无,P
雨,中,正常,无,P
晴,中,正常,有,P
多云,中,大,有,P
多云,热,正常,无,P
雨,中,大,有,N
```
运行代码后,输出的决策树为:
```
{'天况': {'晴': {'湿度': {'大': 'N', '正常': 'P'}}, '多云': {'风况': {'无': 'P', '有': 'P'}}, '雨': 'P'}}
```
最后,我们使用一个样本来进行分类预测,输出分类结果为`N`,与数据集中该样本的分类一致。
阅读全文