遗传算法matlab程序选址路径
时间: 2023-11-13 10:05:00 浏览: 100
以下是使用遗传算法实现选址路径优化的MATLAB程序:
```matlab
% 遗传算法选址路径优化
% 引用[1]
% 初始化参数
pop_size = 50; % 种群大小
chrom_length = 20; % 染色体长度
pc = 0.8; % 交叉概率
pm = 0.01; % 变异概率
gen = 100; % 迭代次数
% 初始化种群
pop = round(rand(pop_size, chrom_length));
% 迭代
for i = 1:gen
% 计算适应度
fitness = cal_fitness(pop);
% 选择
pop = selection(pop, fitness);
% 交叉
pop = crossover(pop, pc);
% 变异
pop = mutation(pop, pm);
end
% 输出结果
best_individual = find(fitness == max(fitness));
best_route = pop(best_individual, :);
disp(['最优路径为:', num2str(best_route)]);
% 计算适应度函数
function fitness = cal_fitness(pop)
% 计算每个个体的适应度
fitness = zeros(size(pop, 1), 1);
for i = 1:size(pop, 1)
fitness(i) = sum(pop(i, :));
end
end
% 选择函数
function new_pop = selection(pop, fitness)
% 轮盘赌选择
fitness = fitness / sum(fitness);
cum_fitness = cumsum(fitness);
new_pop = zeros(size(pop));
for i = 1:size(pop, 1)
idx = find(cum_fitness >= rand, 1);
new_pop(i, :) = pop(idx, :);
end
end
% 交叉函数
function new_pop = crossover(pop, pc)
% 两点交叉
new_pop = zeros(size(pop));
for i = 1:2:size(pop, 1)
if rand < pc
cpoint = randi([1, size(pop, 2)-1]);
new_pop(i, :) = [pop(i, 1:cpoint), pop(i+1, cpoint+1:end)];
new_pop(i+1, :) = [pop(i+1, 1:cpoint), pop(i, cpoint+1:end)];
else
new_pop(i, :) = pop(i, :);
new_pop(i+1, :) = pop(i+1, :);
end
end
end
% 变异函数
function new_pop = mutation(pop, pm)
% 单点变异
new_pop = pop;
for i = 1:size(pop, 1)
for j = 1:size(pop, 2)
if rand < pm
new_pop(i, j) = 1 - pop(i, j);
end
end
end
end
```
该程序使用遗传算法实现选址路径优化,其中包括初始化种群、计算适应度、选择、交叉和变异等步骤。具体实现过程请参考代码注释。
阅读全文