FP-growth算法python实现含数据集,并给出文档
时间: 2024-05-11 20:14:13 浏览: 93
FP-growth算法是一种用于频繁项集挖掘的快速算法,它构建一棵FP树来表示数据集,并利用该树来快速发现频繁项集。
下面是FP-growth算法的Python实现,并附带一个数据集。
```python
class TreeNode:
def __init__(self, name, count, parent):
self.name = name
self.count = count
self.parent = parent
self.children = {}
self.next = None
def inc(self, count):
self.count += count
def display(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.display(ind + 1)
def load_dataset():
return [['bread', 'milk'], ['bread', 'diaper', 'beer', 'egg'], ['milk', 'diaper', 'beer', 'cola'], ['bread', 'milk', 'diaper', 'beer'], ['bread', 'milk', 'diaper', 'cola']]
def create_tree(dataset, min_sup=1):
header_table = {}
for trans in dataset:
for item in trans:
header_table[item] = header_table.get(item, 0) + dataset[trans]
for k in header_table.copy().keys():
if header_table[k] < min_sup:
del (header_table[k])
freq_item_set = set(header_table.keys())
if len(freq_item_set) == 0:
return None, None
for k in header_table:
header_table[k] = [header_table[k], None]
root = TreeNode('Null Set', 1, None)
for tran, count in dataset.items():
local_dic = {}
for item in tran:
if item in freq_item_set:
local_dic[item] = header_table[item][0]
if len(local_dic) > 0:
ordered_items = [v[0] for v in sorted(local_dic.items(), key=lambda p: p[1], reverse=True)]
update_tree(ordered_items, root, header_table, count)
return root, header_table
def update_tree(items, in_tree, header_table, count):
if items[0] in in_tree.children:
in_tree.children[items[0]].inc(count)
else:
in_tree.children[items[0]] = TreeNode(items[0], count, in_tree)
if header_table[items[0]][1] is None:
header_table[items[0]][1] = in_tree.children[items[0]]
else:
update_header(header_table[items[0]][1], in_tree.children[items[0]])
if len(items) > 1:
update_tree(items[1::], in_tree.children[items[0]], header_table, count)
def update_header(node_to_test, target_node):
while node_to_test.next is not None:
node_to_test = node_to_test.next
node_to_test.next = target_node
def ascend_tree(leaf_node, prefix_path):
if leaf_node.parent is not None:
prefix_path.append(leaf_node.name)
ascend_tree(leaf_node.parent, prefix_path)
def find_prefix_path(base_pat, header_table):
tree_node = header_table[base_pat][1]
prefix_path = []
while tree_node is not None:
prefix_path = []
ascend_tree(tree_node, prefix_path)
if len(prefix_path) > 1:
conditional_patterns_base = prefix_path[1:]
yield conditional_patterns_base, tree_node.count
tree_node = tree_node.next
def mine_tree(in_tree, header_table, min_sup, pre_fix, freq_item_list):
big_l = [v[0] for v in sorted(header_table.items(), key=lambda p: p[1][0])]
for base_pat in big_l:
new_freq_set = pre_fix.copy()
new_freq_set.add(base_pat)
freq_item_list.append(new_freq_set)
conditional_patterns = list(find_prefix_path(base_pat, header_table))
conditional_tree, conditional_head = create_tree(conditional_patterns, min_sup)
if conditional_head is not None:
mine_tree(conditional_tree, conditional_head, min_sup, new_freq_set, freq_item_list)
if __name__ == '__main__':
dataset = load_dataset()
root, header_table = create_tree(dataset, 3)
root.display()
freq_items = []
mine_tree(root, header_table, 3, set([]), freq_items)
print(freq_items)
```
数据集:
```
[['bread', 'milk'], ['bread', 'diaper', 'beer', 'egg'], ['milk', 'diaper', 'beer', 'cola'], ['bread', 'milk', 'diaper', 'beer'], ['bread', 'milk', 'diaper', 'cola']]
```
其中,每个元素代表一条交易记录。交易记录中的每个元素代表一个商品。
阅读全文