用Python实现识别验证码(字符数字组成含有干扰线)
时间: 2024-05-10 20:18:00 浏览: 133
验证码识别是一项比较复杂的任务,需要用到图像处理、机器学习等知识,但是我们可以通过一些简单的技巧来实现一个基本的验证码识别程序。以下是一个基于Python的验证码识别程序的实现过程:
1. 导入必要的库
我们需要用到PIL库来处理图像,以及sklearn库来进行机器学习。
```python
from PIL import Image
import numpy as np
from sklearn.neural_network import MLPClassifier
```
2. 预处理图像
我们需要将图像转换为灰度图,并且将其二值化。这可以通过以下代码实现:
```python
def preprocess_image(image_path):
# Open image and convert to grayscale
image = Image.open(image_path).convert('L')
# Apply threshold to get black and white image
threshold_value = 100
image = image.point(lambda x: 0 if x < threshold_value else 255)
return image
```
3. 分割字符
我们需要将验证码中的每个字符分割出来,以便进行单独的识别。这可以通过以下代码实现:
```python
def segment_image(image):
# Find contours
contours = find_contours(image, 0)
# Get bounding rectangles for each contour
rectangles = [cv2.boundingRect(cnt) for cnt in contours]
# Sort rectangles from left to right
rectangles = sorted(rectangles, key=lambda x: x[0])
# Crop and save each character image
characters = []
for rect in rectangles:
x, y, w, h = rect
character_image = image[y:y+h, x:x+w]
characters.append(character_image)
return characters
```
4. 特征提取
我们需要将每个字符转换为一个向量,以便进行机器学习。这可以通过以下代码实现:
```python
def extract_features(character):
# Resize image to 10x10 pixels
resized_character = cv2.resize(character, (10, 10))
# Flatten image to a 1D array
flattened_character = resized_character.flatten()
# Normalize pixel values to be between 0 and 1
normalized_character = flattened_character / 255.0
return normalized_character
```
5. 训练模型
我们需要使用机器学习算法训练一个模型来识别验证码中的字符。这可以通过以下代码实现:
```python
def train_model(X, y):
# Create MLP classifier
clf = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500)
# Train classifier on training data
clf.fit(X, y)
return clf
```
6. 识别验证码
现在我们已经有了一个训练好的模型,我们可以将每个字符提取特征并将其输入到模型中进行预测。这可以通过以下代码实现:
```python
def recognize_captcha(image_path, model):
# Preprocess image
image = preprocess_image(image_path)
# Segment characters
characters = segment_image(image)
# Extract features for each character
features = [extract_features(char) for char in characters]
# Predict labels for each character
labels = model.predict(features)
# Convert labels to string
captcha_text = ''.join(labels)
return captcha_text
```
完整的代码如下:
```python
from PIL import Image
import numpy as np
from sklearn.neural_network import MLPClassifier
import cv2
def preprocess_image(image_path):
# Open image and convert to grayscale
image = Image.open(image_path).convert('L')
# Apply threshold to get black and white image
threshold_value = 100
image = image.point(lambda x: 0 if x < threshold_value else 255)
return image
def segment_image(image):
# Find contours
contours = find_contours(image, 0)
# Get bounding rectangles for each contour
rectangles = [cv2.boundingRect(cnt) for cnt in contours]
# Sort rectangles from left to right
rectangles = sorted(rectangles, key=lambda x: x[0])
# Crop and save each character image
characters = []
for rect in rectangles:
x, y, w, h = rect
character_image = image[y:y+h, x:x+w]
characters.append(character_image)
return characters
def extract_features(character):
# Resize image to 10x10 pixels
resized_character = cv2.resize(character, (10, 10))
# Flatten image to a 1D array
flattened_character = resized_character.flatten()
# Normalize pixel values to be between 0 and 1
normalized_character = flattened_character / 255.0
return normalized_character
def train_model(X, y):
# Create MLP classifier
clf = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500)
# Train classifier on training data
clf.fit(X, y)
return clf
def recognize_captcha(image_path, model):
# Preprocess image
image = preprocess_image(image_path)
# Segment characters
characters = segment_image(image)
# Extract features for each character
features = [extract_features(char) for char in characters]
# Predict labels for each character
labels = model.predict(features)
# Convert labels to string
captcha_text = ''.join(labels)
return captcha_text
# Load training data
X = np.load('X.npy')
y = np.load('y.npy')
# Train model
model = train_model(X, y)
# Recognize captcha
captcha_text = recognize_captcha('captcha.png', model)
print(captcha_text)
```
在运行代码之前,你需要准备一些验证码图像和对应的标签,将它们转换为特征向量和标签向量,然后将其保存为`X.npy`和`y.npy`文件。这可以通过以下代码实现:
```python
# Load captcha images and corresponding labels
captcha_images = []
captcha_labels = []
for i in range(1, 501):
image_path = 'captcha{}.png'.format(i)
captcha_text = image_path.split('.')[0][-6:]
captcha_image = preprocess_image(image_path)
captcha_images.append(captcha_image)
captcha_labels.append(captcha_text)
# Convert captcha images to feature vectors
X = np.array([extract_features(image) for image in captcha_images])
# Convert captcha labels to label vectors
y = np.array(captcha_labels)
# Save training data to file
np.save('X.npy', X)
np.save('y.npy', y)
```
这个程序可能无法完全识别所有的验证码,但是它可以作为一个基本的验证码识别程序的起点。你可以通过改进特征提取、机器学习算法等来提高识别的准确率。
阅读全文