float char_to_float(char* data_byte),这个函数 如何调用》

时间: 2024-05-09 21:21:53 浏览: 71
这个函数可以通过以下方式调用: ``` char* data = "3.14"; float result = char_to_float(data); ``` 注意传入的参数必须是一个指向字符数组的指针,指向的字符数组中必须是表示浮点数的字符串,如"3.14"。函数会将字符串转换为对应的float类型返回。
相关问题

怎么把这段c#转换为c++dll函数实现,并在最后把c返回给c# InferenceSession session = new InferenceSession(modelPath); Mat src_f = copy_from_mat(img); var wl = m_width * m_height; VectorOfMat temp = new VectorOfMat(); CvInvoke.Split(src_f, temp); float[] typedArr = new float[3 * m_width * m_height]; unsafe { fixed (float* target = typedArr) { for (int i = 0; i < temp.Size; i++) { var rawDataPointer = temp[i].DataPointer; Buffer.MemoryCopy((byte*)rawDataPointer, (byte*)target + (i * wl * sizeof(float)), wl * sizeof(float), wl * sizeof(float)); } } } var input = new DenseTensor<float>(typedArr, new[] { 1, 3, m_height, m_width }); var inputs = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input) }; var results = session.Run(inputs).ToArray(); //var ooo = results[0].AsTensor<float>(); float[] c = results[0].AsTensor<float>().ToArray();

以下是将该段代码转换为C++ DLL函数的实现,并在最后将C++返回给C#的示例代码: 首先,需要在C++中引入相关头文件和命名空间: ```c++ #include <vector> #include <string> #include <fstream> #include <iostream> #include <algorithm> #include <numeric> #include <chrono> #include <memory> #include <stdexcept> #include <cstdlib> #include <cstring> #include <cassert> #include <cmath> #include <onnxruntime_cxx_api.h> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; using namespace onnxruntime; ``` 然后,实现C++ DLL函数: ```c++ // 将Mat对象复制到float数组 void copy_from_mat(Mat& img, float* target) { vector<Mat> temp; split(img, temp); int wl = img.cols * img.rows; for (int i = 0; i < temp.size(); i++) { uchar* rawDataPointer = temp[i].data; memcpy(target + i * wl, rawDataPointer, wl * sizeof(float)); } } // 将C++返回给C#的结果转换为float数组 void results_to_float_array(OrtValue& result, float* c) { auto tensor = result.GetTensor<float>(); auto tensor_shape = tensor.Shape(); int num_elements = tensor_shape.Size(); memcpy(c, tensor.Data(), num_elements * sizeof(float)); } // 实现C++ DLL函数 extern "C" __declspec(dllexport) int run_session(float* img_data, int img_width, int img_height, char* model_path, float* c) { try { // 初始化InferenceSession SessionOptions session_options; session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); session_options.SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL); session_options.SetIntraOpNumThreads(1); session_options.SetInterOpNumThreads(1); session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED); InferenceSession session(session_options); OrtMemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeCPU); // 加载模型 session.LoadModel(model_path); // 将输入数据复制到DenseTensor float* typedArr = new float[3 * img_width * img_height]; copy_from_mat(img, typedArr); vector<int64_t> dims = {1, 3, img_height, img_width}; auto input = OrtValue::CreateTensor<float>(info, typedArr, num_elements, dims.data(), dims.size()); delete[] typedArr; // 执行推理 vector<OrtValue> ort_outputs = session.Run({ {session.GetInputName(0), input} }); // 将输出结果转换为float数组 results_to_float_array(ort_outputs[0], c); return 0; } catch (const exception& ex) { cerr << ex.what() << endl; return -1; } } ``` 最后,需要在C#中声明C++ DLL函数,并调用该函数: ```c# [DllImport("your_dll_name.dll")] public static extern int run_session(float[] img_data, int img_width, int img_height, string model_path, float[] c); // 调用C++ DLL函数 float[] img_data = ...; // 输入图像数据 int img_width = ...; // 输入图像宽度 int img_height = ...; // 输入图像高度 string model_path = ...; // 模型路径 float[] c = new float[...]; // 存储输出结果的数组 int ret = run_session(img_data, img_width, img_height, model_path, c); if (ret == 0) { // 输出结果处理代码 } else { // 处理错误 } ```

怎么把这段c#转换为在c++中的dll函数实现,并在最后把float[] c返回给到c#,注意c++中的session和和c#的inferencesession不同 InferenceSession session = new InferenceSession(modelPath); Mat src_f = copy_from_mat(img); var wl = m_width * m_height; VectorOfMat temp = new VectorOfMat(); CvInvoke.Split(src_f, temp); float[] typedArr = new float[3 * m_width * m_height]; unsafe { fixed (float* target = typedArr) { for (int i = 0; i < temp.Size; i++) { var rawDataPointer = temp[i].DataPointer; Buffer.MemoryCopy((byte*)rawDataPointer, (byte*)target + (i * wl * sizeof(float)), wl * sizeof(float), wl * sizeof(float)); } } } var input = new DenseTensor<float>(typedArr, new[] { 1, 3, m_height, m_width }); var inputs = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input) }; var results = session.Run(inputs).ToArray(); //var ooo = results[0].AsTensor<float>(); float[] c = results[0].AsTensor<float>().ToArray();

你想要将上述C#代码转换为C++的DLL函数,以便在C#中使用。下面是一个可能的实现: 首先,你需要包含以下头文件: ```cpp #include <vector> #include <memory> #include <string> #include "onnxruntime_cxx_api.h" #include "opencv2/opencv.hpp" ``` 接下来,你可以编写一个函数,该函数将接收模型路径和OpenCV图像作为输入,并返回结果数组。请注意,为了将结果传递回C#,你需要使用指针并将其包装在一个结构体中。 ```cpp typedef struct { float* data; int size; } FloatArray; FloatArray run_inference(const char* model_path, cv::Mat img) { // Load the model Ort::SessionOptions session_options; Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "onnx"); Ort::Session session(env, model_path, session_options); // Convert the image to a float array int m_width = img.cols; int m_height = img.rows; cv::Mat src_f; img.convertTo(src_f, CV_32FC3); std::vector<cv::Mat> temp; cv::split(src_f, temp); float* typedArr = new float[3 * m_width * m_height]; for (int i = 0; i < temp.size(); i++) { std::memcpy(typedArr + (i * m_width * m_height), temp[i].data, m_width * m_height * sizeof(float)); } // Create the input tensor Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); std::vector<int64_t> input_shape = { 1, 3, m_height, m_width }; Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, typedArr, 3 * m_width * m_height, input_shape.data(), input_shape.size()); // Run the inference const char* input_names[] = { "images" }; Ort::RunOptions run_options; std::vector<Ort::Value> inputs = { input_tensor }; std::vector<const char*> output_names = { "output" }; std::vector<Ort::Value> output_tensors = session.Run(run_options, input_names, inputs.data(), inputs.size(), output_names.data(), output_names.size()); // Convert the output tensor to a float array float* output_data = output_tensors[0].GetTensorMutableData<float>(); int output_size = output_tensors[0].GetTensorTypeAndShapeInfo().GetElementCount(); FloatArray result = { output_data, output_size }; // Clean up delete[] typedArr; return result; } ``` 最后,你需要将该函数导出到DLL。这可以通过以下方式完成: ```cpp extern "C" __declspec(dllexport) FloatArray __cdecl run_inference(const char* model_path, cv::Mat img); ``` 现在你可以在C#中调用此函数,并将结果转换为float数组。
阅读全文

相关推荐

分析一下这段代码:#include "stdio.h" #include<xmmintrin.h> //Need this for SSE compiler intrinsics #include<math.h> //Needed for sqrt in CPU-only version #include<time.h> int main(int argc,char *argv[]) { printf("Starting calculation...\n"); const int length=64000; //We will be calculating Y=SQRT(x)/x, for x=1->64000 //If you do not properly align your data for SSE instructions, you may take a huge performance hit. float *pResult=(float *)_aligned_malloc(length*sizeof(float),16); //align to 16-byte for SSE __m128 x; __m128 xDelta=_mm_set1_ps(4.0f); //Set the xDelta to (4,4,4,4) __m128 *pResultSSE=(__m128 *)pResult; const int SSELength=length/4; clock_t clock1=clock(); #define TIME_SSE //Define this if you want to run with SSE #ifdef TIME_SSE //lots of stress loops so we can easily use a stopwatch for(int stress=0;stress<1000;stress++) { //Set the initial values of x to (4,3,2,1) x=_mm_set_ps(4.0f,3.0f,2.0f,1.0f); for(int i=0; i<SSELength; i++) { __m128 xSqrt=_mm_sqrt_ps(x); //Note! Division is slow. It's actually faster to take the reciprocal of a number and multiply //Also note that Division is more accurate than taking the reciprocal and multiplying #define USE_DIVISION_METHOD #ifdef USE_FAST_METHOD _m128 xRecip=_mm_rcp_ps(x); pResultSSE[i]=_mm_mul_ps(xRecip,xSqrt); #endif //USE_FAST_METHOD #ifdef USE_DIVISION_METHOD pResultSSE[i]=_mm_div_ps(xSqrt,x); #endif //USE_DIVISION_METHOD //Advance x to the next set of numbers x=_mm_add_ps(x,xDelta); } } clock_t clock2=clock(); printf("SIMDtime:%d ms\n",1000*(clock2-clock1)/CLOCKS_PER_SEC); #endif //TIME_SSE #define TIME_noSSE #ifdef TIME_noSSE clock_t clock3=clock(); //lots of stress loops so we can easily use a stopwatch for(int stress=0;stress<1000;stress++) { clock_t clock3=clock(); float xFloat=1.0f; for(int i=0;i<length;i++) { //Even though division is slow,there are no intrinsic functions like there are in SSE pResult[i]=sqrt(xFloat)/xFloat; xFloat+=1.0f; } } clock_t clock4=clock(); printf("noSIMDtime:%d ms\n",1000*(clock4-clock3)/CLOCKS_PER_SEC); #endif //TIME_noSSE return 0; }

给出下列代码在OpenCL中的运行结果:#include "stdio.h" #include <xmmintrin.h> // Need this for SSE compiler intrinsics #include <math.h> // Needed for sqrt in CPU-only version #include <time.h> int main(int argc, char* argv[]) { printf("Starting calculation...\n"); const int length = 64000; // We will be calculating Y = SQRT(x) / x, for x = 1->64000 // If you do not properly align your data for SSE instructions, you may take a huge performance hit. float *pResult = (float*) _aligned_malloc(length * sizeof(float), 16); // align to 16-byte for SSE __m128 x; __m128 xDelta = _mm_set1_ps(4.0f); // Set the xDelta to (4,4,4,4) __m128 *pResultSSE = (__m128*) pResult; const int SSELength = length / 4; clock_t clock1=clock(); #define TIME_SSE // Define this if you want to run with SSE #ifdef TIME_SSE // lots of stress loops so we can easily use a stopwatch for (int stress = 0; stress < 1000; stress++) { // Set the initial values of x to (4,3,2,1) x = _mm_set_ps(4.0f, 3.0f, 2.0f, 1.0f); for (int i=0; i < SSELength; i++) { __m128 xSqrt = _mm_sqrt_ps(x); // Note! Division is slow. It's actually faster to take the reciprocal of a number and multiply // Also note that Division is more accurate than taking the reciprocal and multiplying #define USE_DIVISION_METHOD #ifdef USE_FAST_METHOD __m128 xRecip = _mm_rcp_ps(x); pResultSSE[i] = _mm_mul_ps(xRecip, xSqrt); #endif //USE_FAST_METHOD #ifdef USE_DIVISION_METHOD pResultSSE[i] = _mm_div_ps(xSqrt, x); #endif // USE_DIVISION_METHOD // Advance x to the next set of numbers x = _mm_add_ps(x, xDelta); } } clock_t clock2=clock(); printf("SIMDtime:%d ms\n",1000*(clock2-clock1)/CLOCKS_PER_SEC); #endif // TIME_SSE #define TIME_NoSSE #ifdef TIME_NoSSE clock_t clock3=clock(); // lots of stress loops so we can easily use a stopwatch for (int stress = 0; stress < 1000; stress++) { clock_t clock3=clock(); float xFloat = 1.0f; for (int i=0 ; i < length; i++) { // Even though division is slow, there are no intrinsic functions like there are in SSE pResult[i] = sqrt(xFloat) / xFloat; xFloat += 1.0f; } } clock_t clock4=clock(); printf("noSIMDtime:%d ms\n",1000*(clock4-clock3)/CLOCKS_PER_SEC); #endif // TIME_noSSE return 0; }   

#define sensorpin 34 #define DHTPIN 2 #include <BH1750.h> BH1750 lightMeter; #include <Wire.h> #include <DHT.h> DHT dht(DHTPIN, DHT11); #include<WiFi.h> #include char* ssid ="17group";//此处需要改成你的wifi名称 const char*password =  "hhj20011019";  //你的wifi密码 //以下四行参数勿动 const char*mqttServer = "39.106.6.44"; const int mqttPort =1886; const char*mqttUser = "iotlab"; const char*mqttPassword = "iot20121013"; WiFiClient espClient; PubSubClient client(espClient); char msg[50]; //用于存储向外发送的消息 //回调函数,topic是主题,payload就是收到的信息 void callback(char*topic, byte* payload, unsigned int length) {   Serial.print("Messagearrived in topic: ");   Serial.println(topic);   Serial.print("Message:");   for (int i = 0; i< length; i++) {     Serial.print((char)payload[i]);   }   Serial.println();   Serial.println("-----------------------"); } void setup() {   Serial.begin(115200);   WiFi.begin(ssid,password);   while (WiFi.status()!= WL_CONNECTED) {     delay(500);     Serial.println("Connectingto WiFi..");   }   Serial.println("Connectedto the WiFi network");   client.setServer(mqttServer,mqttPort);   client.setCallback(callback);   while (!client.connected()){     Serial.println("Connectingto MQTT...");     //请将cs202112345后面的数字替换成自己的学号     if (client.connect("cs225150340",mqttUser, mqttPassword )) {       Serial.println("connected");     }else {       Serial.print("failedwith state ");       Serial.print(client.state());       delay(2000);     }   }   client.subscribe("sub225150340");//请将后面的数字替换成自己的学号   {   Serial.begin(115200);   // Initialize the I2C bus (BH1750 library doesn't do this automatically)   Wire.begin();   // On esp8266 you can select SCL and SDA pins using Wire.begin(D4, D3);   // For Wemos / Lolin D1 Mini Pro and the Ambient Light shield use   // Wire.begin(D2, D1);   lightMeter.begin();   } } void loop() {   client.loop();//此句为循环监测是否有消息过来,勿删   //以下是发送一组数据的例子,实际场景替换成读取的传感器数值   float hum = dht.readHumidity();   float temp = dht.readTemperature();   float lux = lightMeter.readLightLevel();   int soilhum  =analogRead(sensorpin); snprintf(msg,50,"%.2f,%.2f,%.1f,%d",hum,temp,lux,soildhum); Serial.println(msg); //这行只是为了调试用 client.publish("pub225150430", msg); //请将后面的数字替换成自己的学号 delay(1000); } 如何接收 #define sensorpin 34 int svalue; void setup(){ Serial.begin(9600); } void loop(){ svalue=analogRead(sensorpin); Serial.println(svalue); delay(1000); } 上的数据

最新推荐

recommend-type

C#调用DLL中非托管C++函数参数类型对照

在C#编程中,经常需要调用C++中的DLL类库,这就需要了解C++中的函数参数类型在C#中的对应关系。以下是基本数据类型的对照: * 一维数组:C#参数在基本类型前加ref或out,out表示有返回数据。例如调用C++的f(float[]...
recommend-type

jna资料3.0api

Java Native Access (JNA) 是一个Java库,允许Java代码直接调用本地平台的API,无需编写C代码或使用JNI(Java Native Interface)。通过JNA,你可以方便地操作Windows DLL,例如与SQLite数据库交互。在JNA3.09 API中...
recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

PowerShell控制WVD录像机技术应用

资源摘要信息:"录像机" 标题: "录像机" 可能指代了两种含义,一种是传统的录像设备,另一种是指计算机上的录像软件或程序。在IT领域,通常我们指的是后者,即录像机软件。随着技术的发展,现代的录像机软件可以录制屏幕活动、视频会议、网络课程等。这类软件多数具备高效率的视频编码、画面捕捉、音视频同步等功能,以满足不同的应用场景需求。 描述: "录像机" 这一描述相对简单,没有提供具体的功能细节或使用场景。但是,根据这个描述我们可以推测文档涉及的是关于如何操作录像机,或者如何使用录像机软件的知识。这可能包括录像机软件的安装、配置、使用方法、常见问题排查等信息。 标签: "PowerShell" 通常指的是微软公司开发的一种任务自动化和配置管理框架,它包含了一个命令行壳层和脚本语言。由于标签为PowerShell,我们可以推断该文档可能会涉及到使用PowerShell脚本来操作或管理录像机软件的过程。PowerShell可以用来执行各种任务,包括但不限于启动或停止录像、自动化录像任务、从录像机获取系统状态、配置系统设置等。 压缩包子文件的文件名称列表: WVD-main 这部分信息暗示了文档可能与微软的Windows虚拟桌面(Windows Virtual Desktop,简称WVD)相关。Windows虚拟桌面是一个桌面虚拟化服务,它允许用户在云端访问一个虚拟化的Windows环境。文件名中的“main”可能表示这是一个主文件或主目录,它可能是用于配置、管理或与WVD相关的录像机软件。在这种情况下,文档可能包含如何使用PowerShell脚本与WVD进行交互,例如记录用户在WVD环境中的活动,监控和记录虚拟机状态等。 基于以上信息,我们可以进一步推断知识点可能包括: 1. 录像机软件的基本功能和使用场景。 2. 录像机软件的安装和配置过程。 3. 录像机软件的高级功能,如自定义录像设置、自动化任务、音视频编辑等。 4. PowerShell脚本的基础知识,包括如何编写简单和复杂的脚本。 5. 如何利用PowerShell管理录像机软件,实现自动化控制和监控录像过程。 6. Windows虚拟桌面(WVD)的基本概念和使用方法。 7. 如何在WVD环境中集成录像功能,以及如何使用PowerShell进行相关配置和管理。 8. 录像数据的处理和存储,包括录像文件的格式、转码、备份和恢复等。 9. 录像机软件在企业环境中应用的策略和最佳实践。 10. 常见问题诊断和解决方法,以及如何使用PowerShell脚本来应对录像机软件出现的问题。 这个知识点总结覆盖了从基础操作到高级管理的多个方面,旨在为读者提供一个全面的录像机软件使用和管理的框架。通过这些知识点,IT专业人员可以更有效地部署、操作和维护录像机系统,确保录像机软件能够满足各种业务需求。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Honeywell打印机驱动提升秘诀:从基础到高级配置的全方位解析

![HoneywellPrint_DLL_UM_CN.pdf](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190425160011/Anonymous-Types-in-C-1024x540.png) # 摘要 本文针对Honeywell打印机驱动的安装、配置、高级功能配置、故障诊断与优化以及安全与合规性进行了全面的介绍。首先概述了Honeywell打印机驱动的基础知识,随后详细阐述了驱动安装流程、基础打印设置及高级功能的实现。接着,文中探讨了打印机驱动在日常使用中可能遇到的常见问题及其解决方法,并提出了一系列打印性能优
recommend-type

Python输入三个数 a,b,c。判断能否以它们为三个边长构成直角三角形。若能,输出 YES,否则 输出NO。

在Python中,我们可以利用勾股定理来判断三个数a、b和c是否可以作为直角三角形的边长。如果满足a² + b² = c²,则这是一组直角三角形的三边;反之则不是。以下是一个简单的函数实现: ```python def is_right_triangle(a, b, c): if a**2 + b**2 == c**2 or a**2 + c**2 == b**2 or b**2 + c**2 == a**2: # 三种情况考虑,因为两边之和等于第三边的情况不属于常规直角三角形 return "YES" else: return "NO"
recommend-type

探索杂货店后端技术与JavaScript应用

资源摘要信息:"杂货店后端开发项目使用了JavaScript技术。" 在当今的软件开发领域,使用JavaScript来构建杂货店后端系统是一个非常普遍的做法。JavaScript不仅在前端开发中占据主导地位,其在Node.js的推动下,后端开发中也扮演着至关重要的角色。Node.js是一个能够使用JavaScript语言运行在服务器端的平台,它使得开发者能够使用熟悉的一门语言来开发整个Web应用程序。 后端开发是构建杂货店应用系统的核心部分,它主要负责处理应用逻辑、与数据库交互以及确保网络请求的正确响应。后端系统通常包含服务器、应用以及数据库这三个主要组件。 在开发杂货店后端时,我们可能会涉及到以下几个关键的知识点: 1. Node.js的环境搭建:首先需要在开发机器上安装Node.js环境。这包括npm(Node包管理器)和Node.js的运行时。npm用于管理项目依赖,比如各种中间件、数据库驱动等。 2. 框架选择:开发后端时,一个常见的选择是使用Express框架。Express是一个灵活的Node.js Web应用框架,提供了一系列强大的特性来开发Web和移动应用。它简化了路由、HTTP请求处理、中间件等功能的使用。 3. 数据库操作:根据项目的具体需求,选择合适的数据库系统(例如MongoDB、MySQL、PostgreSQL等)来进行数据的存储和管理。在JavaScript环境中,数据库操作通常会依赖于相应的Node.js驱动或ORM(对象关系映射)工具,如Mongoose用于MongoDB。 4. RESTful API设计:构建一个符合REST原则的API接口,可以让前端开发者更加方便地与后端进行数据交互。RESTful API是一种开发Web服务的架构风格,它利用HTTP协议的特性,使得Web服务能够使用统一的接口来处理资源。 5. 身份验证和授权:在杂货店后端系统中,管理用户账户和控制访问权限是非常重要的。这通常需要实现一些身份验证机制,如JWT(JSON Web Tokens)或OAuth,并根据用户角色和权限管理访问控制。 6. 错误处理和日志记录:为了保证系统的稳定性和可靠性,需要实现完善的错误处理机制和日志记录系统。这能帮助开发者快速定位问题,以及分析系统运行状况。 7. 容器化与部署:随着Docker等容器化技术的普及,越来越多的开发团队选择将应用程序容器化部署。容器化可以确保应用在不同的环境和系统中具有一致的行为,极大地简化了部署过程。 8. 性能优化:当后端应用处理大量数据或高并发请求时,性能优化是一个不可忽视的问题。这可能包括数据库查询优化、缓存策略的引入、代码层面的优化等等。 通过以上知识点的综合运用,我们可以构建出一个功能丰富、性能优化良好并且可扩展性强的杂货店后端系统。当然,在实际开发过程中,还需要充分考虑安全性、可维护性和测试等因素。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【松下伺服故障预防与维护手册】:从报警代码中提炼出的维护要诀

![【松下伺服故障预防与维护手册】:从报警代码中提炼出的维护要诀](https://assets.content.na.industrial.panasonic.com/public/inline-images/panasonic-servos-%26-drives-grp-photo-rgb-1105-x-370-09-07-22.png?VersionId=f9eJ1OTTrsuzTPjWGmGokgWMpIMwEE0Q) # 摘要 伺服系统是确保工业自动化设备稳定运行的关键组成部分,故障预防、诊断分析、维护实践以及修复技术是提高系统稳定性和减少停机时间的重要手段。本文首先概述了伺服系统