float char_to_float(char* data_byte),这个函数 如何调用》
时间: 2024-05-09 21:21:53 浏览: 71
这个函数可以通过以下方式调用:
```
char* data = "3.14";
float result = char_to_float(data);
```
注意传入的参数必须是一个指向字符数组的指针,指向的字符数组中必须是表示浮点数的字符串,如"3.14"。函数会将字符串转换为对应的float类型返回。
相关问题
怎么把这段c#转换为c++dll函数实现,并在最后把c返回给c# InferenceSession session = new InferenceSession(modelPath); Mat src_f = copy_from_mat(img); var wl = m_width * m_height; VectorOfMat temp = new VectorOfMat(); CvInvoke.Split(src_f, temp); float[] typedArr = new float[3 * m_width * m_height]; unsafe { fixed (float* target = typedArr) { for (int i = 0; i < temp.Size; i++) { var rawDataPointer = temp[i].DataPointer; Buffer.MemoryCopy((byte*)rawDataPointer, (byte*)target + (i * wl * sizeof(float)), wl * sizeof(float), wl * sizeof(float)); } } } var input = new DenseTensor<float>(typedArr, new[] { 1, 3, m_height, m_width }); var inputs = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input) }; var results = session.Run(inputs).ToArray(); //var ooo = results[0].AsTensor<float>(); float[] c = results[0].AsTensor<float>().ToArray();
以下是将该段代码转换为C++ DLL函数的实现,并在最后将C++返回给C#的示例代码:
首先,需要在C++中引入相关头文件和命名空间:
```c++
#include <vector>
#include <string>
#include <fstream>
#include <iostream>
#include <algorithm>
#include <numeric>
#include <chrono>
#include <memory>
#include <stdexcept>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <cmath>
#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
using namespace onnxruntime;
```
然后,实现C++ DLL函数:
```c++
// 将Mat对象复制到float数组
void copy_from_mat(Mat& img, float* target) {
vector<Mat> temp;
split(img, temp);
int wl = img.cols * img.rows;
for (int i = 0; i < temp.size(); i++) {
uchar* rawDataPointer = temp[i].data;
memcpy(target + i * wl, rawDataPointer, wl * sizeof(float));
}
}
// 将C++返回给C#的结果转换为float数组
void results_to_float_array(OrtValue& result, float* c) {
auto tensor = result.GetTensor<float>();
auto tensor_shape = tensor.Shape();
int num_elements = tensor_shape.Size();
memcpy(c, tensor.Data(), num_elements * sizeof(float));
}
// 实现C++ DLL函数
extern "C" __declspec(dllexport) int run_session(float* img_data, int img_width, int img_height, char* model_path, float* c) {
try {
// 初始化InferenceSession
SessionOptions session_options;
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
session_options.SetExecutionMode(ExecutionMode::ORT_SEQUENTIAL);
session_options.SetIntraOpNumThreads(1);
session_options.SetInterOpNumThreads(1);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
InferenceSession session(session_options);
OrtMemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeCPU);
// 加载模型
session.LoadModel(model_path);
// 将输入数据复制到DenseTensor
float* typedArr = new float[3 * img_width * img_height];
copy_from_mat(img, typedArr);
vector<int64_t> dims = {1, 3, img_height, img_width};
auto input = OrtValue::CreateTensor<float>(info, typedArr, num_elements, dims.data(), dims.size());
delete[] typedArr;
// 执行推理
vector<OrtValue> ort_outputs = session.Run({ {session.GetInputName(0), input} });
// 将输出结果转换为float数组
results_to_float_array(ort_outputs[0], c);
return 0;
} catch (const exception& ex) {
cerr << ex.what() << endl;
return -1;
}
}
```
最后,需要在C#中声明C++ DLL函数,并调用该函数:
```c#
[DllImport("your_dll_name.dll")]
public static extern int run_session(float[] img_data, int img_width, int img_height, string model_path, float[] c);
// 调用C++ DLL函数
float[] img_data = ...; // 输入图像数据
int img_width = ...; // 输入图像宽度
int img_height = ...; // 输入图像高度
string model_path = ...; // 模型路径
float[] c = new float[...]; // 存储输出结果的数组
int ret = run_session(img_data, img_width, img_height, model_path, c);
if (ret == 0) {
// 输出结果处理代码
} else {
// 处理错误
}
```
怎么把这段c#转换为在c++中的dll函数实现,并在最后把float[] c返回给到c#,注意c++中的session和和c#的inferencesession不同 InferenceSession session = new InferenceSession(modelPath); Mat src_f = copy_from_mat(img); var wl = m_width * m_height; VectorOfMat temp = new VectorOfMat(); CvInvoke.Split(src_f, temp); float[] typedArr = new float[3 * m_width * m_height]; unsafe { fixed (float* target = typedArr) { for (int i = 0; i < temp.Size; i++) { var rawDataPointer = temp[i].DataPointer; Buffer.MemoryCopy((byte*)rawDataPointer, (byte*)target + (i * wl * sizeof(float)), wl * sizeof(float), wl * sizeof(float)); } } } var input = new DenseTensor<float>(typedArr, new[] { 1, 3, m_height, m_width }); var inputs = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input) }; var results = session.Run(inputs).ToArray(); //var ooo = results[0].AsTensor<float>(); float[] c = results[0].AsTensor<float>().ToArray();
你想要将上述C#代码转换为C++的DLL函数,以便在C#中使用。下面是一个可能的实现:
首先,你需要包含以下头文件:
```cpp
#include <vector>
#include <memory>
#include <string>
#include "onnxruntime_cxx_api.h"
#include "opencv2/opencv.hpp"
```
接下来,你可以编写一个函数,该函数将接收模型路径和OpenCV图像作为输入,并返回结果数组。请注意,为了将结果传递回C#,你需要使用指针并将其包装在一个结构体中。
```cpp
typedef struct {
float* data;
int size;
} FloatArray;
FloatArray run_inference(const char* model_path, cv::Mat img) {
// Load the model
Ort::SessionOptions session_options;
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "onnx");
Ort::Session session(env, model_path, session_options);
// Convert the image to a float array
int m_width = img.cols;
int m_height = img.rows;
cv::Mat src_f;
img.convertTo(src_f, CV_32FC3);
std::vector<cv::Mat> temp;
cv::split(src_f, temp);
float* typedArr = new float[3 * m_width * m_height];
for (int i = 0; i < temp.size(); i++) {
std::memcpy(typedArr + (i * m_width * m_height), temp[i].data, m_width * m_height * sizeof(float));
}
// Create the input tensor
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
std::vector<int64_t> input_shape = { 1, 3, m_height, m_width };
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, typedArr, 3 * m_width * m_height, input_shape.data(), input_shape.size());
// Run the inference
const char* input_names[] = { "images" };
Ort::RunOptions run_options;
std::vector<Ort::Value> inputs = { input_tensor };
std::vector<const char*> output_names = { "output" };
std::vector<Ort::Value> output_tensors = session.Run(run_options, input_names, inputs.data(), inputs.size(), output_names.data(), output_names.size());
// Convert the output tensor to a float array
float* output_data = output_tensors[0].GetTensorMutableData<float>();
int output_size = output_tensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
FloatArray result = { output_data, output_size };
// Clean up
delete[] typedArr;
return result;
}
```
最后,你需要将该函数导出到DLL。这可以通过以下方式完成:
```cpp
extern "C" __declspec(dllexport) FloatArray __cdecl run_inference(const char* model_path, cv::Mat img);
```
现在你可以在C#中调用此函数,并将结果转换为float数组。
阅读全文