python Numba
时间: 2023-10-19 14:34:43 浏览: 138
numba:使用LLVM的NumPy感知动态Python编译器
Numba is a just-in-time (JIT) compiler for Python that translates Python code into optimized machine code at runtime. It is specifically designed to speed up the execution of numerical computations and works well with NumPy arrays and functions.
By using Numba, you can achieve significant performance improvements in Python code without having to rewrite it in a lower-level language like C or Fortran. Numba allows you to write your code in pure Python and then decorate the functions or methods that you want to accelerate with the `@jit` decorator.
Here's an example of how to use Numba to accelerate a Python function:
```python
import numba as nb
@nb.jit
def my_function(x, y):
z = x + y
return z
result = my_function(3, 4)
print(result)
```
In this example, the `@jit` decorator tells Numba to compile the `my_function` function. Numba then generates optimized machine code for the function, resulting in faster execution compared to regular Python code.
It's important to note that not all types of Python code can be accelerated with Numba. It works best with numerical computations that involve arrays, loops, and mathematical operations. Additionally, Numba supports parallel computation on multiple CPU cores and can also generate code for GPUs.
I hope this answers your question! Let me know if you have any more.
阅读全文