__HAL_UART_DISABLE_IT(huart2, UART_IT_IDLE);
时间: 2023-11-28 15:33:54 浏览: 290
根据引用和引用中的信息,__HAL_UART_DISABLE_IT(huart2, UART_IT_IDLE)函数用于禁用UART接收中断。在引用中,__HAL_UART_DISABLE(huart)函数用于直接关闭串口,导致不进入串口中断。这两个函数的作用是不同的。
对于引用中的情况,在stm32f103单片机上使用__HAL_UART_DISABLE_IT(huart2, UART_IT_IDLE)函数是没有问题的,但在stm32f030单片机上可能无法接收数据并且不进入中断,这可能是因为在stm32f030单片机上的UART模块的实现方式与stm32f103单片机上的不同。
因此,__HAL_UART_DISABLE_IT(huart2, UART_IT_IDLE)函数的使用需要根据具体的单片机型号和技术规格来确定是否适用。如果在stm32f030单片机上无法接收数据并且不进入中断,建议查阅stm32f030的相关技术文档或咨询相关技术支持以获取准确的解决方案。
相关问题
hal库uart2,dma中断配置代码
以下是HAL库中使用UART2和DMA的中断配置代码示例:
```
// 定义DMA和UART2的句柄
DMA_HandleTypeDef hdma_usart2_rx;
UART_HandleTypeDef huart2;
// 配置UART2和DMA接收
void MX_USART2_UART_Init(void)
{
// ... UART2的基本配置 ...
// 配置DMA句柄
hdma_usart2_rx.Instance = DMA1_Stream5;
hdma_usart2_rx.Init.Channel = DMA_CHANNEL_4;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_NORMAL;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
hdma_usart2_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
HAL_DMA_Init(&hdma_usart2_rx);
// 关联DMA和UART2
__HAL_LINKDMA(&huart2, hdmarx, hdma_usart2_rx);
// 使能UART2 IDLE中断
SET_BIT(huart2.Instance->CR1, USART_CR1_IDLEIE);
// 使能DMA传输完成中断
__HAL_DMA_ENABLE_IT(&hdma_usart2_rx, DMA_IT_TC);
}
// UART2中断回调函数
void HAL_UART_IDLE_Callback(UART_HandleTypeDef *huart)
{
// 如果是UART2触发的中断
if (huart == &huart2)
{
// 关闭DMA传输
HAL_UART_DMAStop(&huart2);
// 处理接收到的数据
// ...
// 重新开启DMA传输
HAL_UART_Receive_DMA(&huart2, rx_buf, RX_BUF_SIZE);
}
}
// DMA传输完成中断回调函数
void HAL_DMA_TC_Callback(DMA_HandleTypeDef *hdma)
{
// 如果是UART2触发的中断
if (hdma == &hdma_usart2_rx)
{
// 关闭DMA传输
HAL_UART_DMAStop(&huart2);
// 处理接收到的数据
// ...
// 重新开启DMA传输
HAL_UART_Receive_DMA(&huart2, rx_buf, RX_BUF_SIZE);
}
}
// 启动UART2接收
void start_uart2_receive(void)
{
HAL_UART_Receive_DMA(&huart2, rx_buf, RX_BUF_SIZE);
}
```
以上代码中,我们定义了一个DMA和UART2的句柄,然后在初始化函数中进行了DMA和UART2的配置,包括了DMA数据传输方向、传输模式、优先级等参数的设置。接着我们使用了`__HAL_LINKDMA()`函数将DMA和UART2关联起来,并使能了UART2的IDLE中断和DMA的传输完成中断。最后我们在中断回调函数中处理接收到的数据,重新开启DMA传输。在程序中我们可以通过调用`start_uart2_receive()`函数启动UART2的接收。
HAL_UARTEx_ReceiveToIdle_DMA示例
以下是HAL_UARTEx_ReceiveToIdle_DMA的示例代码:
```c
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_rx;
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART2_UART_Init();
uint8_t buffer[100] = {0};
uint32_t rx_size;
while (1)
{
// Start UART reception in DMA mode until idle
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, buffer, sizeof(buffer));
// Wait until idle
while (HAL_UARTEx_GetRxIdleness(&huart2) != RESET);
// Get received data size
rx_size = sizeof(buffer) - __HAL_DMA_GET_COUNTER(&hdma_usart2_rx);
// Process received data
// ...
// Clear buffer
memset(buffer, 0, sizeof(buffer));
}
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* User may add here some code to deal with this error */
while(1)
{
}
}
/**
* @brief This function is executed in case of DMA interrupt occurrence.
* @retval None
*/
void DMA1_Stream5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_usart2_rx);
}
/**
* @brief This function is executed when DMA reception is completed.
* @param huart: UART handle
* @retval None
*/
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart)
{
if (huart->Instance == USART2)
{
// DMA reception completed, do something if needed
}
}
```
在此示例代码中,我们使用STM32Cube HAL库实现了UART的DMA接收,使用了HAL_UARTEx_ReceiveToIdle_DMA函数。在主循环中,我们不断调用该函数以启动DMA接收,然后等待DMA接收完成。一旦接收完成,我们就可以对接收到的数据进行处理。注意,在处理完数据后,我们需要清空接收缓冲区,以便下一次接收。
阅读全文