深度学习人体动作识别代码

时间: 2024-10-25 10:01:13 浏览: 45
深度学习在人体动作识别领域的应用通常涉及卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN),特别是LSTM(长短时记忆网络)的结合。以下是基本的步骤: 1. 数据准备:收集大量的视频数据,包含各种人体动作,标注每个帧的动作类别。 2. 数据预处理:将视频转换为适合输入模型的格式,例如帧序列、灰度图像或RGB颜色空间,并进行缩放、裁剪、归一化等操作。 3. 特征提取:CNN用于提取时空特征,如I3D (Inflated 3D ConvNet) 或C3D(Convolutional 3D)网络,可以捕捉到动作的关键帧特征。 4. 序列建模:RNN(如LSTM)或Transformer结构用于理解动作的时间连续性和动态变化。 5. 模型训练:将特征序列输入到深度学习模型中,通过反向传播算法优化模型权重,目标是最大化分类准确率。 6. 模型评估与调整:使用验证集测试模型性能,如准确率、F1分数等,根据结果调整超参数或尝试更复杂的网络架构。 7. 测试部署:在新数据上进行预测,生成动作类别概率分布并选择最高概率对应的类别作为动作识别的结果。
相关问题

基于姿态估计的方法的人体动作识别代码

### 回答1: 以下是基于姿态估计的人体动作识别代码的示例: 首先需要安装相关的Python库,例如OpenCV和OpenPose。 ``` pip install opencv-python pip install opencv-contrib-python pip install pyyaml pip install opencv-python-headless pip install opencv-contrib-python-headless pip install matplotlib pip install tensorflow==2.4.0 pip install keras==2.4.3 pip install pandas pip install scikit-learn ``` 然后,我们可以使用OpenPose提取人体姿态,并将其作为输入来识别人体动作。以下是示例代码: ``` import cv2 import os import numpy as np import pandas as pd from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout from sklearn.model_selection import train_test_split # Load OpenPose model protoFile = "path/to/pose/deploy/prototxt" weightsFile = "path/to/pose/caffemodel" net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile) # Define function to extract pose keypoints def getKeypoints(frame, net): blob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (368, 368), (0, 0, 0), swapRB=False, crop=False) net.setInput(blob) output = net.forward() H = output.shape[2] W = output.shape[3] points = [] for i in range(18): probMap = output[0, i, :, :] minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) x = (frame.shape[1] * point[0]) / W y = (frame.shape[0] * point[1]) / H if prob > 0.1: points.append((int(x), int(y))) else: points.append(None) return points # Define function to read data def readData(path): data = pd.read_csv(path) X = [] y = [] for i in range(len(data)): filename = data['filename'][i] label = data['label'][i] cap = cv2.VideoCapture(filename) frames = [] while True: ret, frame = cap.read() if not ret: break frame = cv2.resize(frame, (640, 480)) points = getKeypoints(frame, net) frames.append(points) X.append(frames) y.append(label) return X, y # Define function to prepare data for LSTM def prepareData(X, y): X = np.array(X) y = np.array(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) return X_train, X_test, y_train, y_test # Define LSTM model model = Sequential() model.add(LSTM(units=64, input_shape=(None, 36))) model.add(Dropout(0.5)) model.add(Dense(units=3, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Load data and prepare for training X, y = readData("path/to/data.csv") X_train, X_test, y_train, y_test = prepareData(X, y) y_train = pd.get_dummies(y_train).values y_test = pd.get_dummies(y_test).values # Train LSTM model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=50, batch_size=32) # Save trained model model.save("path/to/model.h5") ``` 在上述示例代码中,我们首先使用OpenPose提取每个视频帧的姿态关键点。然后,我们读取数据并将其准备为LSTM模型可以处理的格式。接下来,我们定义了一个LSTM模型并对其进行训练。最后,我们保存了训练好的模型以供以后使用。 请注意,此示例代码仅用于说明目的。实际应用中,您需要根据您的数据和任务进行修改和调整。 ### 回答2: 基于姿态估计的人体动作识别代码通常包括以下几个步骤: 1. 数据预处理:从摄像头或视频中获取人体动作数据,并进行预处理。预处理包括图像的裁剪、尺寸调整等操作,确保输入数据的统一格式和大小。 2. 关节点提取:使用姿态估计算法(如OpenPose)对预处理后的图像进行关节点提取。关节点是人体动作的关键标志,通常包括头部、颈部、肩部、手肘、膝盖等关节位置。 3. 特征工程:根据提取的关节点信息,进行特征工程的处理。可以使用多种方法,如计算关节之间的角度、距离、速度等,以及关节点之间的连线长度等。 4. 特征选择:根据实际需求,选择最相关的特征作为输入,去除冗余或不相关的特征。 5. 数据分类与训练:使用机器学习算法或深度学习模型,对所选特征进行训练和分类。常见的机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)等,而常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。 6. 动作识别:根据训练得到的模型,对新的动作数据进行识别。可以通过预测概率或类别标签的方式,判断输入数据所属的动作类别。 基于姿态估计的人体动作识别代码需要掌握计算机视觉、机器学习和深度学习等相关知识,并使用相应的开源库和工具对数据进行处理和模型训练。同时,还需要有一定的数据集和标注的工作,以获取具有代表性的训练和测试数据。 ### 回答3: 基于姿态估计的人体动作识别代码主要包括以下几个步骤: 1. 数据准备:首先,需要收集包含不同人体动作的数据集,每个数据都包含人体姿态信息和动作标签。数据集可以通过运动捕捉系统、深度相机或传感器等设备获取。然后,将这些数据划分为训练集和测试集,用于模型训练和评估。 2. 姿态估计:使用姿态估计算法(例如OpenPose)对每个帧的图像或视频进行处理,提取人体的关节点信息。关节点信息可以包括人体的头、肩膀、手臂、腿部等部位的位置和方向。 3. 特征提取:从姿态估计得到的关节点信息中提取特征。常用的特征提取方法包括相对关节点位置、关节点间的距离、角度、速度等。可以根据具体任务的要求选择合适的特征。 4. 动作分类:使用分类算法对提取的特征进行训练和分类,将不同的动作分为不同的类别。常见的分类算法包括支持向量机(SVM)、决策树、随机森林等。训练时,将特征向量与相应的动作标签进行匹配,建立分类模型。测试时,使用模型对新的动作数据进行预测。 5. 评估与优化:使用测试集对训练的模型进行评估,计算分类的准确率、精确度、召回率等指标。根据评估结果可以调整模型参数、特征提取方法、分类算法等,进一步优化动作识别的性能。 总结:基于姿态估计的人体动作识别代码主要包括数据准备、姿态估计、特征提取、动作分类等步骤。通过对训练集的学习,可以让计算机理解并判断人体的不同动作,在实际应用中可以用于体育训练、健康监测、安防系统等领域。

基于混合注意力机制的人体动作识别代码

基于混合注意力机制的人体动作识别代码是一种利用深度学习技术来识别人体动作的方法。该方法通过引入注意力机制,可以有效地提高模型的识别准确率。下面是该方法的大致流程: 1. 首先,需要对人体的动作进行数据采集和预处理,包括对人体的姿态和关键点的提取等。 2. 接着,需要建立混合注意力机制模型。该模型基于卷积神经网络(CNN)和长短时记忆网络(LSTM),同时引入了空间和通道注意力机制来提高模型的特征提取能力和泛化能力。 3. 最后,需要对训练好的模型进行评估和测试。评估方法一般采用准确率、召回率、F1值等指标来评估模型的性能。 如果您想了解更多关于基于混合注意力机制的人体动作识别代码的详细内容,可以参考以下论文: "Human Action Recognition Based on Hybrid Attention Mechanism" by W. Hu, X. Song, and X. Zhang.
阅读全文

相关推荐

大家在看

recommend-type

PTC Creo® 3.0 安装与管理指南

PTC Creo® 3.0 安装与管理指南主要介绍了新版Creo的安装于授权管理等内容。
recommend-type

BW310 中文版

BW310标准教程
recommend-type

三菱FX3U-485ADP-MB通讯三种变频器程序 已实现测试的变频器:施耐德ATV312, 三菱E700,台达VFD-M三款变

三菱FX3U-485ADP-MB通讯三种变频器程序 已实现测试的变频器:施耐德ATV312, 三菱E700,台达VFD-M三款变频器,支持rtu的协议的变频器都可实现。 需要硬件:FX3UPLC,FX3U-485ADP-MB通信扩展模块,施耐德ATV312变频器或台达vfd-m变频器或三菱E700变频器,fx3u-cnv-bd 。 通过modbus rtu通讯方式 ,可以实现控制正反转,启动停止,触摸屏直接频率设定,以及对频率电流,运行状态的监控。 反馈及时,无延迟,使用方便。 内容包含plc和触摸屏程序,参数设置,接线及教程。 这里有三种变频器程序,可以通过三菱FX3U-485ADP-MB通信扩展模块实现测试。已经测试过的变频器包括施耐德ATV312、三菱E700和台达VFD-M,只要支持rtu协议的变频器都可以使用。 为了实现这个功能,您需要以下硬件设备:FX3UPLC、FX3U-485ADP-MB通信扩展模块、施耐德ATV312变频器或台达VFD-M变频器或三菱E700变频器,以及fx3u-cnv-bd。 通过modbus rtu通信方式,您可以实现控制正反转、启动停止,还可
recommend-type

基于Labview的 FTP 的文件传输

基于Labview FTP 的文件传输
recommend-type

地图分幅制作生产方法

矢量图、遥感影像在ARCGIS下标准分幅图的制作生产流程

最新推荐

recommend-type

基于MediaPipe人体姿态识别

例如,DeepPose首次将深度学习应用于人体关键点检测,而MTCNN则结合了人脸分类、区域检测和关键点检测。 2. Heatmap派:使用热力图预测,每个通道代表一类关键点,以二维高斯分布为中心,其他位置为0。网络预测的...
recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

【毕业设计】matlab植物虫害检测的系统源码.zip

【毕业设计】matlab植物虫害检测的系统源码.zip
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【OPC UA基础教程】:C#实现与汇川PLC通讯的必备指南

# 摘要 随着工业自动化和智能制造的发展,OPC UA (Open Platform Communications Unified Architecture) 协议已成为实现设备间安全通信的关键技术。本文首先概述了OPC UA协议的基础知识,随后介绍了C#语言的基础和开发环境的配置,特别是如何在C#中集成OPC UA客户端库。文章重点讨论了OPC UA在C#环境中的应用,包括实现客户端、进行数据读写操作以及订阅机制。此外,还详细探讨了如何在C#环境中实现与汇川PLC的通讯,并提供了解决异常和通讯中断情况下的策略。最后,文章分析了OPC UA在工业自动化中的高级应用,包括面对工业4.0挑战的优势