用Python写激光雷达点云pcd障碍物识别并用open3d可视化
时间: 2023-12-23 07:05:09 浏览: 209
要实现激光雷达点云pcd障碍物识别并用open3d可视化,可以按照以下步骤进行:
1. 安装open3d和numpy库:
```python
pip install open3d numpy
```
2. 读取pcd文件:
```python
import open3d as o3d
pcd = o3d.io.read_point_cloud("example.pcd")
```
3. 对点云进行下采样,以加快处理速度:
```python
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
```
4. 对下采样后的点云进行平滑处理,以去除噪声:
```python
downpcd.estimate_normals()
downpcd.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([downpcd])
```
5. 对处理后的点云进行聚类,找出障碍物:
```python
with o3d.utility.VerbosityContextManager(
o3d.utility.VerbosityLevel.Debug) as cm:
labels = np.array(downpcd.cluster_dbscan(eps=0.5, min_points=10, print_progress=True))
max_label = labels.max()
print(f"point cloud has {max_label + 1} clusters")
colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
colors[labels < 0] = 0
downpcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
o3d.visualization.draw_geometries([downpcd])
```
6. 可以将障碍物的点云保存成独立的pcd文件:
```python
for i in range(max_label + 1):
indices = np.where(labels == i)[0]
cloud_cluster = downpcd.select_down_sample(indices)
o3d.io.write_point_cloud(f"cluster{i}.pcd", cloud_cluster)
```
7. 最后,可以用open3d可视化显示障碍物识别结果:
```python
o3d.visualization.draw_geometries([downpcd])
```
完整代码如下:
```python
import numpy as np
import open3d as o3d
import matplotlib.pyplot as plt
# 读取pcd文件
pcd = o3d.io.read_point_cloud("example.pcd")
# 对点云进行下采样
downpcd = pcd.voxel_down_sample(voxel_size=0.05)
# 对下采样后的点云进行平滑处理
downpcd.estimate_normals()
downpcd.paint_uniform_color([1, 0.706, 0])
o3d.visualization.draw_geometries([downpcd])
# 对处理后的点云进行聚类,找出障碍物
with o3d.utility.VerbosityContextManager(
o3d.utility.VerbosityLevel.Debug) as cm:
labels = np.array(downpcd.cluster_dbscan(eps=0.5, min_points=10, print_progress=True))
max_label = labels.max()
print(f"point cloud has {max_label + 1} clusters")
colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
colors[labels < 0] = 0
downpcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
o3d.visualization.draw_geometries([downpcd])
# 将障碍物的点云保存成独立的pcd文件
for i in range(max_label + 1):
indices = np.where(labels == i)[0]
cloud_cluster = downpcd.select_down_sample(indices)
o3d.io.write_point_cloud(f"cluster{i}.pcd", cloud_cluster)
# 用open3d可视化显示障碍物识别结果
o3d.visualization.draw_geometries([downpcd])
```
阅读全文