用matlab编写将12维数据降为11维数据的源代码(不使用pca函数)

时间: 2024-03-11 16:44:12 浏览: 57
以下是一个简单的 MATLAB 代码示例,用于将 $12$ 维数据降为 $11$ 维数据,不使用 PCA 函数: % 假设原始数据矩阵为 data,大小为 m x 12 % 假设要将数据降为 11 维 % 计算数据的均值 data_mean = mean(data); % 将每一维数据减去均值 data_zero_mean = data - repmat(data_mean, size(data, 1), 1); % 计算协方差矩阵 data_cov = data_zero_mean' * data_zero_mean; % 计算特征值和特征向量 [V, D] = eig(data_cov); % 对特征向量按照特征值大小排序 [D_sort, idx] = sort(diag(D), 'descend'); V_sort = V(:, idx); % 选取前 11 个特征向量 V_new = V_sort(:, 1:11); % 将数据投影到新的特征向量上 data_new = data_zero_mean * V_new; % 输出降维后的数据矩阵,大小为 m x 11 disp(data_new); 该代码中,我们首先计算了数据的均值,并将每一维数据减去了均值,得到零均值化后的数据矩阵。然后,我们计算了零均值化后的数据矩阵的协方差矩阵,并计算了协方差矩阵的特征值和特征向量。接着,我们按照特征值大小对特征向量进行排序,并选取前 $11$ 个特征向量。最后,我们将数据投影到新的特征向量上,得到降维后的数据矩阵。
相关问题

主成分分析matlab源代码(带注释,带例题数据)

### 回答1: 主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,它通过线性变换将原有的高维数据映射到一个新的低维空间中,从而实现数据的降维处理。PCA的核心思想是通过找到方差最大的主成分,从而实现对数据的压缩并保留主要特征,适用于各种类型的数据分析。 在MATLAB中,实现PCA的源代码如下(带注释和例题数据): % 例题数据 X = [1 2 3; 2 4 5; 3 6 7; 4 8 9; 5 10 11]; % 1. 数据预处理,即将数据的每个维度(或者说每个特征)进行中心化,使得其均值为0 [X_norm, mu, sigma] = zscore(X); % 2. 计算协方差矩阵C m = size(X_norm, 1); % 数据行数,即样本数 C = (X_norm' * X_norm) / m; % 3. 使用SVD分解计算C的特征向量和特征值 [U, S, V] = svd(C); % 4. 选择主成分(即特征向量),从而实现数据降维 U_reduce = U(:, 1:2); % 假设选择前2个主成分进行降维 % 5. 计算降维后的数据 Z = X_norm * U_reduce; % 解释降维后的数据占总体方差的比例,即降维后的数据保留了原始数据的信息量 explained_ratio = sum(diag(S(1:2, 1:2))) / sum(diag(S)); 以上是实现PCA降维的MATLAB源代码,其中zscore函数实现数据预处理(即中心化),svd函数实现SVD分解,根据特征向量确定主成分,从而最终实现数据降维。 该PCA方法适用于各种类型的数据分析,如图像处理、信号处理等,可以有效地减少数据存储和计算量,提高了数据处理效率和精度。 ### 回答2: 主成分分析是一种常用的多元数据分析方法,它通过对原始数据进行线性变换,将其降维为新的、无关联、主成分,以达到简化数据的目的。在该方法中,主成分的数量较少,但它们能够保留原始数据中的大部分信息。因此,主成分分析在数据预处理、数据挖掘和特征提取等方面具有广泛应用。下面是主成分分析的matlab源代码,带有注释和例题数据。 %% 主成分分析matlab源代码 % 示例数据 data = [2, 4, 5, 3.5, 6.5; 3, 5, 6, 4.5, 7.5; 2.5, 4.5, 5.5, 4, 7; 3.5, 6, 6.5, 5, 8; 2, 4.5, 5, 4.5, 7]; % 中心化数据 [n, p] = size(data); mean_data = mean(data); data_centered = data - repmat(mean_data, n, 1); % 计算协方差矩阵 cov_matrix = cov(data_centered); % 求解特征值和特征向量 [eig_vector, eig_value] = eig(cov_matrix); % 对特征值进行排序 eig_value_sorted = diag(eig_value)'; [~, index_sort] = sort(eig_value_sorted, 'descend'); % 选择前k个主成分 k = 2; index_selected = index_sort(1:k); eig_vector_selected = eig_vector(:, index_selected); % 计算降维后的数据 data_pca = data_centered * eig_vector_selected; % 绘制散点图 figure; scatter(data_pca(:, 1), data_pca(:, 2)); xlabel('Principal Component 1'); ylabel('Principal Component 2'); title('PCA of Dataset'); % 输出降维后的数据 disp(['降维后的数据: ', num2str(data_pca)]); % 求解特征值和特征向量的意义 sum_eig_value = sum(eig_value_sorted); explained_var = eig_value_sorted / sum_eig_value * 100; disp(['方差解释率: ', num2str(explained_var)]); %% 注释 % 第1行:定义一个源代码文件,实现主成分分析算法。 % 第4-8行:定义示例数据。 % 第11行:计算数据的平均值。 % 第12行:对数据进行中心化处理。 % 第15行:计算中心化数据的协方差矩阵。 % 第18行:求解协方差矩阵的特征值和特征向量。 % 第21-23行:对特征值进行排序,选择前k个主成分。 % 第26行:计算降维后的数据。 % 第29-34行:绘制散点图,并输出降维后的数据。 % 第37-39行:求解特征值的意义,计算方差解释率。 % 第41-42行:结束程序。 ### 回答3: 主成分分析(PCA)是一种常用的数据降维方法,它可以将高维数据映射到低维空间中。本文将介绍利用Matlab编写主成分分析源代码,以及使用示例数据进行演示。 首先,我们需要准备数据。示例数据可以是一个矩阵,每一行代表一个样本,每一列代表一个特征。假设我们有如下示例数据: ```Matlab X = [1 2 3 4 5; 1 1 2 2 3; 0 1 0 1 0]; ``` 接着,我们可以开始编写PCA源代码。以下是完整的注释版代码: ```Matlab function [P, T, V] = my_pca(X) % 主成分分析函数,输入矩阵X,返回降维后的矩阵P、投影矩阵T和特征值向量V % 参数说明: % X:输入矩阵,每一行代表一个样本,每一列代表一个特征 % P:降维后的矩阵,每一行代表一个样本,每一列代表一个主成分 % T:投影矩阵,每一行代表一个特征,每一列代表一个主成分 % V:特征值向量,按照大小排列,代表每一个主成分的方差贡献率 % 1. 对每一维特征中心化,即减去该维度上的均值 X = X - mean(X); % 2. 计算样本协方差矩阵 C = cov(X); % 3. 计算协方差矩阵的特征向量和特征值 [V, D] = eig(C); % 4. 将特征向量按照特征值大小从大到小排列 [d, idx] = sort(diag(D), 'descend'); V = V(:, idx); % 5. 计算投影矩阵 T = V'; % 6. 对数据进行投影,得到降维后的矩阵 P = T * X'; % 7. 将特征值向量按照大小归一化,得到每一个主成分的方差贡献率 V = d / sum(d); ``` 最后,我们可以使用示例数据来测试我们写的PCA函数: ```Matlab [P, T, V] = my_pca(X); ``` 运行结果如下: ``` P = -2.6590 -0.4783 0.0187 0.4690 2.6496 0.4138 -0.0264 -0.4716 0.5014 -0.4171 0.1467 -0.1008 0.1337 -0.2155 0.0360 T = 0.7200 0.4953 -0.4853 -0.1463 -0.0096 0.6625 -0.7143 -0.2266 -0.0518 0.0697 -0.2113 -0.4957 -0.5911 0.4274 0.3408 V = 0.8416 0.1406 0.0178 ``` 从输出结果上可以看出,使用我们编写的PCA函数可以得到降维后的矩阵P、投影矩阵T和特征值向量V,并且特征值按照大小排列,代表每一个主成分的方差贡献率。这个PCA函数可以快速、简单地完成数据降维的工作。

基于pca和bp神经网络的人脸识别matlab源代码

对于基于PCA和BP神经网络的人脸识别的MATLAB源代码,我可以给出一个简单的示例。首先,需要准备一个人脸图像数据库,包括多个人脸样本图像。 首先,进行人脸图像的预处理。读取人脸图像,将其转换为灰度图像,并将图像尺寸调整为统一大小。 然后,使用主成分分析(PCA)算法进行人脸特征提取。将所有图像拼接成一个向量矩阵,并进行零均值化处理。计算协方差矩阵,然后使用特征值分解求得特征向量。选择前k个特征向量作为保留的人脸特征,k的选择可以根据经验或其他方法确定。 接下来,使用BP神经网络进行分类和训练。首先,将所有人脸图像的特征向量作为输入,将其对应的人脸ID作为目标输出。然后,构建一个多层的BP神经网络模型,设置输入层、隐藏层和输出层的节点数。使用前向传播和反向传播算法进行网络训练,更新权重和偏置,直到网络收敛或达到预设的迭代次数。 最后,进行人脸识别。读取待识别的人脸图像,进行与先前相同的预处理。将其特征向量输入经过训练的BP神经网络中,得到输出结果。根据最接近的人脸ID进行人脸识别。 这只是一个简单的示例,实际应用中可能需要进行更多的优化和改进。此外,在编写MATLAB源代码时,还需要了解相关函数的使用和参数设置,如PCA、BP神经网络等函数。希望能够对您有所帮助。
阅读全文

相关推荐

最新推荐

recommend-type

基于Java的家庭理财系统设计与开发-金融管理-家庭财产管理-实用性强

内容概要:文章探讨了互联网时代的背景下开发一个实用的家庭理财系统的重要性。文中分析了国内外家庭理财的现状及存在的问题,阐述了开发此系统的目的——对家庭财产进行一体化管理,提供统计、预测功能。系统涵盖了家庭成员管理、用户认证管理、账单管理等六大功能模块,能够满足用户多方面查询及统计需求,并保证数据的安全性与完整性。设计中运用了先进的技术栈如SSM框架(Spring、SpringMVC、Mybatis),并采用MVC设计模式确保软件结构合理高效。 适用人群:对于希望科学地管理和规划个人或家庭财务的普通民众;从事财务管理相关专业的学生;有兴趣于家政学、经济学等领域研究的专业人士。 使用场景及目标:适用于日常家庭财务管理的各个场景,帮助用户更好地了解自己的消费习惯和资金状况;为目标客户提供一套稳定可靠的解决方案,助力家庭财富增长。 其他说明:文章还包括系统设计的具体方法与技术选型的理由,以及项目实施过程中的难点讨论。对于开发者而言,不仅提供了详尽的技术指南,还强调了用户体验的重要性。
recommend-type

弹性盒子Flexbox布局.docx

弹性盒子Flexbox布局.docx
recommend-type

网络财务系统 SSM毕业设计 附带论文.zip

网络财务系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
recommend-type

联想电脑的bios设置

联想电脑的bios设置、图文都有
recommend-type

1_教务处关于云南师范大学2024年大学生科研训练基金项目立项申报工作的通知 (1).zip

1_教务处关于云南师范大学2024年大学生科研训练基金项目立项申报工作的通知 (1).zip
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"