self.weight_sg1 = nn.Conv2d(32, 640, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg2 = nn.Conv2d(32, 640, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg11 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) self.weight_sg12 = nn.Conv2d(48, 960, (3, 3), (1, 1), (1, 1), bias=False) self.weight_lg1 = nn.Sequential(BasicConv(16, 16, kernel_size=3, padding=1), nn.Conv2d(16, 75, (3, 3), (1, 1), (1, 1) ,bias=False)) self.weight_lg2 = nn.Sequential(BasicConv(16, 16, kernel_size=3, padding=1), nn.Conv2d(16, 75, (3, 3), (1, 1), (1, 1) ,bias=False)

时间: 2023-09-05 09:09:06 浏览: 11
这段代码是在定义一个神经网络模型,其中包含了多个卷积层。具体来说,这段代码定义了以下卷积层: - `self.weight_sg1`:输入通道数为 32,输出通道数为 640,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 - `self.weight_sg2`:输入通道数为 32,输出通道数为 640,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 - `self.weight_sg11`:输入通道数为 48,输出通道数为 960,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 - `self.weight_sg12`:输入通道数为 48,输出通道数为 960,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 - `self.weight_lg1`:这是一个序列,包含了两个卷积层。第一个卷积层的输入通道数为 16,输出通道数为 16,卷积核大小为 3,步长为 1,填充为 1。第二个卷积层的输入通道数为 16,输出通道数为 75,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 - `self.weight_lg2`:这也是一个序列,包含了两个卷积层。第一个卷积层的输入通道数为 16,输出通道数为 16,卷积核大小为 3,步长为 1,填充为 1。第二个卷积层的输入通道数为 16,输出通道数为 75,卷积核大小为 (3, 3),步长为 (1, 1),填充为 (1, 1),没有偏置项。 这些卷积层一般被用于构建卷积神经网络模型,用于处理图像、语音、文本等数据。这些卷积层的具体作用和含义取决于具体的神经网络模型和任务。

相关推荐

这个错误是由于conv_offset1和conv_mask1的输入通道数与conv1的输出通道数不匹配所引起的。你可以尝试修改conv_offset1和conv_mask1的输入通道数以匹配conv1的输出通道数,或者将conv1的输出通道数修改为匹配conv_offset1和conv_mask1的输入通道数。你可以使用print语句检查conv1的输出通道数和conv_offset1、conv_mask1的输入通道数是否匹配。 根据报错信息,可以看到输入的张量input的shape为[1, 64, 512, 512],而conv_offset1和conv_mask1的输入通道数为512,但conv1的输出通道数为ndf,即64。因此,你需要将conv_offset1和conv_mask1的输入通道数修改为ndf,即64。修改后的代码如下: def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) ] sequence2 = sequence1 + self.sequence2 self.model = nn.Sequential(*sequence2) nn.LeakyReLU(0.2, True) return self.model(input)

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法: 1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。 2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。 3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。 以下是代码的修改建议: 1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。 2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。 3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。 4. 增加正则化:可以使用 L2 正则化来防止过拟合。 修改后的代码如下: import torch.nn.functional as F import torchvision.transforms as transforms class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5, 1024) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(1024, 141) # 数据增强 self.transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) def forward(self, x): x = self.conv1_1(x) x = self.bn1_1(x) x = self.relu1_1(x) x = self.pool1(x) x = self.conv2_1(x) x = self.bn2_1(x) x = self.relu2_1(x) x = self.pool2(x) x = self.conv3_1(x) x = self.bn3_1(x) x = self.relu3_1(x) x = self.pool3(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu4_1(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu4_2(x) x = self.pool4(x) x = self.conv5_1(x) x = self.bn5_1(x) x = self.relu5_1(x) x = self.conv5_2(x) x = self.bn5_2(x) x = self.relu5_2(x) x = self.pool5(x) x = x.view(-1, 512*5*5) x = self.dropout1(x) x = self.fc1(x) x = self.relu6(x) x = self.dropout2(x) x = self.fc2(x) return x 在训练时,可以使用如下代码来进行数据增强: trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=model.transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) self.sequence2 = [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d(input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=(1, 1)) 上述代码中出现错误:RuntimeError: Expected weight_c.size(1) * n_weight_grps == input_c.size(1) to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.),请问如何解决,给出修改后的代码

这个错误通常是由于卷积层的通道数和输入数据的通道数不匹配导致的。根据错误信息可以看出,这个错误是在第 49 行的 deform_conv2d 函数中出现的。根据代码,这个函数是使用可变形卷积进行特征提取的,因此需要注意卷积层的通道数和输入数据的通道数是否匹配。具体来说,需要检查卷积层的输入通道数和权重矩阵的通道数是否匹配。 下面是修改后的代码,主要是修改了可变形卷积的输入参数,确保通道数匹配: python class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.conv1 = nn.Conv2d(input_nc, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 self.sequence2 = [] for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) self.sequence2 += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] self.sequence2 += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: self.sequence2 += [nn.Sigmoid()] def forward(self, input): input = self.conv1(input) offset1 = self.conv_offset1(input) mask1 = torch.sigmoid(self.conv_mask1(input)) sequence1 = [ torchvision.ops.deform_conv2d( input=input, offset=offset1, weight=self.conv1.weight, mask=mask1, padding=1, stride=1, dilation=1 ) ] for layer in self.sequence2: sequence1.append(layer(sequence1[-1])) return sequence1[-1] 需要注意的是,由于 deform_conv2d 函数的输入参数有很多,需要根据实际情况进行调整。

如何将self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) # 初始化为0 self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) # 初始化为0.5 与torchvision.ops.deform_conv2d,加入到:class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): return self.model(input)中,请给出修改后的代码

可以将self.conv1、self.conv_offset1和self.conv_mask1加入到NLayerDiscriminator中的nn.Sequential序列中,如下所示: import torchvision from torchvision.ops.deform_conv import DeformConv2d class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw-1)/2)) nf_mult = 1 sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ DeformConv2d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) self.conv1 = nn.Conv2d(4 * ndf, ndf, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(ndf, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, ndf, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(ndf, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, ndf, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) def forward(self, input): x = input for module in self.model: if isinstance(module, DeformConv2d): offset_mask = torch.cat([self.conv_offset1(x), self.conv_mask1(x)], dim=1) x = module(x, offset_mask) else: x = module(x) return x 这里使用了torchvision.ops.deform_conv2d中的DeformConv2d作为最后一层卷积层,因此需要将self.conv1、self.conv_offset1和self.conv_mask1的通道数修改为ndf。在forward中,对于DeformConv2d层,需要将self.conv_offset1和self.conv_mask1的输出拼接起来作为offset_mask输入。
可以在LeNet5_2类的__init__方法中添加BatchNorm2d层来实现批量归一化操作,如下所示: class LeNet5_2(nn.Cell): def __init__(self, num_class=10, num_channel=3): super(LeNet5_2, self).__init__() # 卷积层 self.conv1 = nn.Conv2d(num_channel, 64, 3, pad_mode='valid', weight_init=Normal(0.06)) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, 3, pad_mode='valid', weight_init=Normal(0.06)) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, 3, pad_mode='valid', weight_init=Normal(0.06)) self.bn3 = nn.BatchNorm2d(128) # 全连接层 self.fc1 = nn.Dense(128*2*2, 120, weight_init=Normal(0.06)) self.bn4 = nn.BatchNorm1d(120) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.06)) self.bn5 = nn.BatchNorm1d(84) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.06)) # 激活函数 self.relu = nn.ReLU() # 最大池化层 self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) # 网络展开 self.flatten = nn.Flatten() self.num_class = num_class # 构建网络 def construct(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.bn4(x) x = self.relu(x) x = self.fc2(x) x = self.bn5(x) x = self.relu(x) x = self.fc3(x) return x 其中,BatchNorm2d层用于卷积层的批量归一化操作,BatchNorm1d层用于全连接层的批量归一化操作。在构建网络时,需要将批量归一化层添加到对应的卷积层或全连接层后面。
这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。 具体来说,代码中的各个部分的功能如下: - features_list = list(vgg19.features.children()):获取 VGG19 模型的所有卷积层。 - self.conv2_2 = torch.nn.Sequential(*features_list[:13]):将前 13 层卷积层作为 conv2_2 层。 - self.conv3_4 = torch.nn.Sequential(*features_list[13:26]):将第 14 层到第 26 层卷积层作为 conv3_4 层。 - self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]):将第 27 层到第 39 层卷积层作为 conv4_4 层。 - self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]):将第 40 层到倒数第二层卷积层作为 conv5_4 层。 - self.tail_layer = features_list[-1]:将最后一层卷积层作为尾部层。 - self.fc_layers = list(vgg19.classifier.children())[:-2]:获取 VGG19 模型的所有全连接层,但不包括最后两层。 - self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)):将所有全连接层组成一个新的连续的全连接层。 - self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1)):将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。 - self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1)):将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。 - self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1)):将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。 - self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1)):将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。 - self.fc0 = torch.nn.Linear(196, 1, bias=True):定义一个输入为 196 的全连接层,用于分类。 - self.fc1 = torch.nn.Linear(196, 1, bias=True):定义第二个输入为 196 的全连接层,用于分类。 - self.fc2 = torch.nn.Linear(196, 1, bias=True):定义第三个输入为 196 的全连接层,用于分类。 - self.fc3 = torch.nn.Linear(196, 1, bias=True):定义第四个输入为 196 的全连接层,用于分类。 - self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True):定义一个输入为 4096 的全连接层,用于分类。 - self.bn1 = torch.nn.BatchNorm1d(k):定义一个 Batch Normalization 层,用于归一化数据。 - self.bn2 = torch.nn.BatchNorm1d(k):定义第二个 Batch Normalization 层,用于归一化数据。 - weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4):对所有全连接层进行权重初始化,以提高模型的性能。

class NLayerDiscriminator(nn.Module): def init(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).init() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw - 1) / 2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if n == 1: num_filters = ndf * nf_mult self.conv1 = nn.Conv2d(4 * num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(512, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 512, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(512, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 512, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): offset1 = self.conv_offset1(input) mask1 = self.conv_mask1(input) input = torch.cat([input, offset1, mask1], dim=1) return self.model(input),运行上述代码出现错误:RuntimeError: Given groups=1, weight of size [18, 512, 3, 3], expected input[1, 3, 512, 512] to have 512 channels, but got 3 channels instead,如何修改,给出代码

根据错误提示,可以发现是因为 conv_offset1 的输入通道数为 512,但是 input 的通道数为 3。因此需要将 conv_offset1 的输入通道数修改为 3。同时,根据代码中的注释,num_filters 应该为 ndf * nf_mult_prev,因此需要将 num_filters 的计算公式修改为 ndf * nf_mult_prev * 4。修改后的代码如下: class NLayerDiscriminator(nn.Module): def __init__(self, input_nc=3, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, use_parallel=True): super(NLayerDiscriminator, self).__init__() self.use_parallel = use_parallel if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = int(np.ceil((kw - 1) / 2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if n == 1: num_filters = ndf * nf_mult_prev * 4 self.conv1 = nn.Conv2d(num_filters, num_filters, kernel_size=3, padding=1) self.conv_offset1 = nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1) init_offset1 = torch.Tensor(np.zeros([18, 3, 3, 3])) self.conv_offset1.weight = torch.nn.Parameter(init_offset1) self.conv_mask1 = nn.Conv2d(3, 9, kernel_size=3, stride=1, padding=1) init_mask1 = torch.Tensor(np.zeros([9, 3, 3, 3]) + np.array([0.5])) self.conv_mask1.weight = torch.nn.Parameter(init_mask1) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ torchvision.ops.DeformConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, input): offset1 = self.conv_offset1(input) mask1 = self.conv_mask1(input) input = torch.cat([input, offset1, mask1], dim=1) return self.model(input)
以下是将LeNet代码改为ResNet网络模型的代码: import paddle.nn.functional as F class ResNet(paddle.nn.Layer): def __init__(self, num_classes=2): super(ResNet, self).__init__() # 第一个卷积层,输出通道数为64,卷积核大小为7x7,步长为2,padding为3 self.conv1 = paddle.nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False) self.bn1 = paddle.nn.BatchNorm2D(64) self.relu = paddle.nn.ReLU() self.max_pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1) # ResNet的主体部分,包括4个残差块 self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) # 全局平均池化层 self.avg_pool = paddle.nn.AdaptiveAvgPool2D((1, 1)) # 分类器 self.fc = paddle.nn.Linear(512, num_classes) def _make_layer(self, channels, blocks, stride=1): layers = [] # 下采样,对输入进行降维 downsample = None if stride != 1 or self.in_channels != channels: downsample = paddle.nn.Sequential( paddle.nn.Conv2D(self.in_channels, channels, kernel_size=1, stride=stride, bias_attr=False), paddle.nn.BatchNorm2D(channels) ) layers.append(ResidualBlock(self.in_channels, channels, stride, downsample)) self.in_channels = channels for _ in range(1, blocks): layers.append(ResidualBlock(channels, channels)) return paddle.nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.max_pool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avg_pool(x) x = paddle.flatten(x, 1) x = self.fc(x) return x class ResidualBlock(paddle.nn.Layer): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False) self.bn1 = paddle.nn.BatchNorm2D(out_channels) self.relu = paddle.nn.ReLU() self.conv2 = paddle.nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn2 = paddle.nn.BatchNorm2D(out_channels) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out paddle.Model(ResNet()).summary((-1,3,256,256)) 这里我们定义了一个ResNet网络模型,包括一个卷积层,一个最大池化层,4个残差块,一个全局平均池化层和一个分类器。其中,每个残差块包含两个卷积层和一个跳跃连接,卷积层的输出通道数和步长根据网络深度不同而不同。在模型前向传播过程中,我们先使用一次卷积和池化操作,然后将特征图输入到各个残差块中,最后进行全局平均池化和分类。

为以下的每句代码做注释:class ResNet(nn.Module): def init(self, block, blocks_num, num_classes=1000, include_top=True): super(ResNet, self).init() self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x

这段代码定义了一个 ResNet 类,继承自 nn.Module 类。ResNet 是一个深度卷积神经网络模型,用于图像分类任务。下面是对代码注释的解释: - class ResNet(nn.Module): 定义了一个 ResNet 类,继承自 nn.Module 类。 - def init(self, block, blocks_num, num_classes=1000, include_top=True): ResNet 类的初始化函数,接受 block、blocks_num、num_classes 和 include_top 四个参数。其中,block 是 ResNet 中的基础模块,blocks_num 是每层中包含的基础模块数量,num_classes 是输出的分类数目,include_top 表示是否包含全连接层。 - super(ResNet, self).init() 调用父类的初始化函数。 - self.include_top = include_top 设置 include_top 属性。 - self.in_channel = 64 设置输入通道数为 64。 - self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) 定义第一个卷积层,输入通道数为 3,输出通道数为 self.in_channel,卷积核大小为 7x7,步长为 2,填充为 3,不使用偏置。 - self.bn1 = nn.BatchNorm2d(self.in_channel) 定义第一个 BatchNorm2d 层,对输入进行批量归一化。 - self.relu = nn.ReLU(inplace=True) 定义 ReLU 激活函数。 - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) 定义最大池化层,池化核大小为 3x3,步长为 2,填充为 1。 - self.layer1 = self._make_layer(block, 64, blocks_num[0]) 定义 ResNet 中的第一个残差块,包含 blocks_num[0] 个基础模块,每个基础模块的输出通道数为 64。 - self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) 定义 ResNet 中的第二个残差块,包含 blocks_num[1] 个基础模块,每个基础模块的输出通道数为 128,步长为 2。 - self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) 定义 ResNet 中的第三个残差块,包含 blocks_num[2] 个基础模块,每个基础模块的输出通道数为 256,步长为 2。 - self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) 定义 ResNet 中的第四个残差块,包含 blocks_num[3] 个基础模块,每个基础模块的输出通道数为 512,步长为 2。 - if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) 定义自适应平均池化层,输出大小为 (1, 1)。 - self.fc = nn.Linear(512 * block.expansion, num_classes) 定义全连接层,将输入展平后,输出大小为 num_classes。 - for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') 对 ResNet 中所有的卷积层进行权重初始化。 - def _make_layer(self, block, channel, block_num, stride=1): 定义私有函数 _make_layer,用于构建残差块。 - downsample = None 初始化 downsample 变量。 - if stride != 1 or self.in_channel != channel * block.expansion: 如果步长不为 1 或者输入通道数不等于 channel * block.expansion,则进行下采样操作。 - downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) 定义下采样层,包含一个卷积层和一个 BatchNorm2d 层。 - layers = [] 初始化 layers 列表。 - layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) 将第一个基础模块加入到 layers 列表中。 - self.in_channel = channel * block.expansion 更新输入通道数。 - for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) 构建剩余的基础模块,添加到 layers 列表中。 - return nn.Sequential(*layers) 将 layers 列表中的基础模块打包成一个 Sequential 层,并返回。 - def forward(self, x): 定义前向传播函数。 - x = self.conv1(x) 进行第一个卷积操作。 - x = self.bn1(x) 进行第一个 BatchNorm2d 操作。 - x = self.relu(x) 进行 ReLU 激活操作。 - x = self.maxpool(x) 进行最大池化操作。 - x = self.layer1(x) 进行第一个残差块操作。 - x = self.layer2(x) 进行第二个残差块操作。 - x = self.layer3(x) 进行第三个残差块操作。 - x = self.layer4(x) 进行第四个残差块操作。 - if self.include_top: x = self.avgpool(x) 进行自适应平均池化操作。 - x = torch.flatten(x, 1) 将输出展平。 - x = self.fc(x) 进行全连接层操作,输出分类结果。 - return x 返回分类结果。
对LeNet模型进行优化可以从以下几个方面入手: 1. 使用更加先进的卷积神经网络模型,如ResNet、Inception等,可以提升模型的准确率和泛化能力。 2. 使用更加高效的优化算法,如Adam、SGD等,可以加速模型训练过程,并提高训练效果。 3. 增加数据增强技术,如旋转、翻转、缩放等,可以扩大数据集,提高模型的泛化能力。 4. 使用更加精细的超参数调整方法,如网格搜索、贝叶斯优化等,可以找到更加优秀的超参数组合,提高模型的性能。 下面是使用更加高效的优化算法Adam对LeNet模型进行优化的代码: import paddle class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() # 创建卷积和池化层块,每个卷积层使用relu激活函数,后面跟着一个2x2的池化 self.conv1 = paddle.nn.Conv2D(3, 32, 3, 1, 1) self.relu1 = paddle.nn.ReLU() self.max_pool1 = paddle.nn.MaxPool2D(2, 2) self.conv2 = paddle.nn.Conv2D(32, 64, 3, 1, 1) self.relu2 = paddle.nn.ReLU() self.max_pool2 = paddle.nn.MaxPool2D(2, 2) self.avg_pool = paddle.nn.AdaptiveAvgPool2D(1) self.linear= paddle.nn.Linear(64, 2) # 网络的前向计算过程 def forward(self, x): x = self.max_pool1(self.relu1(self.conv1(x))) x = self.max_pool2(self.relu2(self.conv2(x))) x = self.avg_pool(x) x = paddle.reshape(x, [x.shape[0],-1]) x = self.linear(x) return x # 使用Adam优化器 optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) # 创建模型实例 model = paddle.Model(LeNet()) # 编译模型 model.prepare(optimizer=optimizer, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) # 打印模型结构和参数量 model.summary((-1,3,256,256)) 在代码中,我们使用了更加高效的Adam优化算法,并将其作为优化器传入模型中进行训练。同时,我们还使用了paddle.nn.AdaptiveAvgPool2D代替了原来的自定义平均池化层,简化了代码。最后,使用paddle.Model的prepare方法编译了模型,并使用model.summary方法打印了模型结构和参数量。

class ASPP(nn.Module) def init(self, dim_in, dim_out, rate=1, bn_mom=0.1) super(ASPP, self).init() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=4 rate, dilation=4 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=8 rate, dilation=8 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 rate, dilation=12 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=16 rate, dilation=16 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch6 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=20 rate, dilation=20 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch7 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=24 rate, dilation=24 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch8_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True) self.branch8_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch8_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out 8, dim_out, 1, 1, padding=0, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x) [b, c, row, col] = x.size() conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) conv3x3_4 = self.branch5(x) conv3x3_5 = self.branch6(x) conv3x3_6 = self.branch7(x) global_feature = torch.mean(x, 2, True) global_feature = torch.mean(global_feature, 3, True) global_feature = self.branch8_conv(global_feature) global_feature = self.branch8_bn(global_feature) global_feature = self.branch8_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, conv3x3_4, conv3x3_5, conv3x3_6, global_feature], dim=1) result = self.conv_cat(feature_cat) return result用深度可分离卷积代替这段代码的3×3卷积

可以将代码中的3x3卷积替换为深度可分离卷积,即将nn.Conv2d替换为nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=in_channels, bias=True),其中groups=in_channels,表示每个输入通道都对应一个卷积核,实现深度可分离卷积。具体替换代码如下: class ASPP(nn.Module): def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1): super(ASPP, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=4 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=8 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=16 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch6 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=20 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch7 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=24 * rate, dilation=rate, groups=dim_in, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch8_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True) self.branch8_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch8_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out * 8, dim_out, 1, 1, padding=0, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x): [b, c, row, col] = x.size() conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) conv3x3_4 = self.branch5(x) conv3x3_5 = self.branch6(x) conv3x3_6 = self.branch7(x) global_feature = torch.mean(x, 2, True) global_feature = torch.mean(global_feature, 3, True) global_feature = self.branch8_conv(global_feature) global_feature = self.branch8_bn(global_feature) global_feature = self.branch8_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, conv3x3_4, conv3x3_5, conv3x3_6, global_feature], dim=1) result = self.conv_cat(feature_cat) return result

最新推荐

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

今天小编就为大家分享一篇对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

YOLOV3训练自己的数据集(PyTorch版本).docx

YOLOV3训练自己的数据集pytorch版本训练教程

sulime-text版本4166安装包

Sublime Text是一款 轻量级 \color{red}{轻量级} 轻量级的网页编辑器,它能够透过安装外挂套件的方式,让使用者自行建立符合自身需求的程序撰写环境,也可以让使用者依据自己的偏好设定功能的快捷键与预设程序码等等,以提高使用者程序撰写的效率。

HAT2016RJ-VB一款2个N沟道SOP8封装MOSFET应用分析

2个N沟道,30V,6.8/6.0A,RDS(ON),22mΩ@10V,26mΩ@4.5V,20Vgs(±V);1.73Vth(V);SOP8

(超详细)前端路由跳转-vue-router

(超详细)前端路由跳转-vue-router

基于单片机温度控制系统设计--大学毕业论文.doc

基于单片机温度控制系统设计--大学毕业论文.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

如何使用Promise.all()方法?

Promise.all()方法可以将多个Promise实例包装成一个新的Promise实例,当所有的Promise实例都成功时,返回的是一个结果数组,当其中一个Promise实例失败时,返回的是该Promise实例的错误信息。使用Promise.all()方法可以方便地处理多个异步操作的结果。 以下是使用Promise.all()方法的示例代码: ```javascript const promise1 = Promise.resolve(1); const promise2 = Promise.resolve(2); const promise3 = Promise.resolve(3)

android studio设置文档

android studio默认设置文档

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�