pytorch实现cnn手写数字识别并计算查准率,查全率以及ALU的代码

时间: 2023-06-18 20:06:22 浏览: 32
以下是使用PyTorch实现CNN手写数字识别并计算查准率、查全率和ALU的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets # 设置超参数 num_epochs = 10 num_classes = 10 batch_size = 100 learning_rate = 0.001 # 加载数据集并进行预处理 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(7*7*32, num_classes) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.reshape(out.size(0), -1) out = self.fc(out) return out # 实例化CNN模型 model = CNN() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播并优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每训练100个batch就输出一次信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('准确率: {} %'.format(100 * correct / total)) # 计算查准率、查全率和ALU with torch.no_grad(): TP, TN, FP, FN = 0, 0, 0, 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) for i in range(len(labels)): if labels[i] == predicted[i]: if labels[i] == 1: TP += 1 else: TN += 1 else: if labels[i] == 1: FN += 1 else: FP += 1 precision = TP / (TP + FP) recall = TP / (TP + FN) ALU = (TN + TP) / (TN + TP + FP + FN) print('查准率: {:.4f}, 查全率: {:.4f}, ALU: {:.4f}'.format(precision, recall, ALU)) ``` 在以上代码中,我们首先加载MNIST数据集并进行预处理。然后,我们定义了一个CNN模型,并且实例化了该模型。接着,我们定义了损失函数和优化器,并在训练过程中使用它们。最后,我们测试了模型的准确率,并计算了查准率、查全率和ALU。 请注意,查准率(precision)是指正确预测为正类的样本数(True Positive)占所有预测为正类的样本数(True Positive + False Positive)的比例;查全率(recall)是指正确预测为正类的样本数(True Positive)占所有真实为正类的样本数(True Positive + False Negative)的比例;ALU(Accuracy of Labeling Unlabeled data)是指正确预测为负类的样本数(True Negative)和正确预测为正类的样本数(True Positive)占所有样本数(True Negative + True Positive + False Negative + False Positive)的比例。

相关推荐

好的,下面是利用 PyTorch 构建 CNN 实现手写数字识别的代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义变换 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练网络 for epoch in range(2): # 多次遍历数据集 running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 正向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() if i % 2000 == 1999: # 每 2000 个小批量数据打印一次 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 在测试集上测试网络 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 这个代码会下载MNIST数据集,使用了一个两层卷积神经网络(Convolutional Neural Network,CNN)来训练手写数字识别模型,并在测试集上进行测试,输出模型在测试集上的准确率。
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别。MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别。mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) 以上就是一个基于PyTorch的mnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。
手写数字识别是一项常见的机器学习任务,可以使用PyTorch库来实现。首先,我们需要准备手写数字的数据集,比如MNIST数据集,它包含大量的手写数字图片和对应的标签。然后,我们可以使用PyTorch提供的数据加载和预处理工具来加载数据集,并将图片转换成张量,标签转换成对应的数字。 接下来,我们可以构建一个卷积神经网络(CNN)模型来进行手写数字识别。在PyTorch中,我们可以使用nn.Module类来定义神经网络模型,通过继承这个类并重写forward方法来定义模型的前向传播过程。我们可以使用一些常见的卷积层、池化层和全连接层来构建我们的CNN模型,同时也可以添加一些激活函数和正则化方法来提高模型的性能。 在模型定义好之后,我们可以使用PyTorch提供的优化器和损失函数来进行模型训练。我们可以使用反向传播算法来更新模型的参数,通过调整参数来最小化损失函数。在训练过程中,我们也可以使用一些常见的训练技巧,比如学习率衰减、批量归一化等来提高模型的收敛速度和准确率。 最后,我们可以使用训练好的模型来进行手写数字识别。我们可以将手写数字图片输入到模型中,模型会输出对应的数字标签,我们可以对这个标签进行解码,得到我们识别出的手写数字。通过不断优化模型和参数,我们可以实现准确率较高的手写数字识别模型。
MNIST是深度学习领域的一个经典数据集,包含了手写数字0-9的灰度图像,每张图像的尺寸为28×28像素。基于这个数据集,我们可以训练一个模型来实现手写数字的识别。 下面是一个基于PyTorch实现的MNIST手写数字识别代码的分析: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 首先,我们需要导入PyTorch及其相关的库,其中包括了神经网络相关的模块、优化器模块、数据处理模块等。 python transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) 接着,我们对MNIST数据集进行预处理,将其转化为一个可用于训练的数据集和测试集,并进行标准化处理。 python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.pool = nn.MaxPool2d(2) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 320) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x 然后,我们定义了一个卷积神经网络模型。这个模型包括了两个卷积层和两个全连接层,其中卷积层用于提取图像特征,而全连接层则用于分类任务。 python net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 接着,我们定义了损失函数和优化器,其中损失函数采用交叉熵损失,优化器采用随机梯度下降(SGD)方法。 python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') 最后,我们使用训练集对模型进行训练,并在每个epoch结束时输出损失值。训练完成后,我们可以使用测试集来评估模型的性能。 这就是一个基于PyTorch实现的MNIST手写数字识别代码的分析。通过这个例子,我们可以了解到如何使用PyTorch来构建、训练和评估一个深度学习模型。
你可以使用PyTorch来实现CNN(卷积神经网络)手写数字识别。以下是一个简单的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(64*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.relu(x) x = self.maxpool(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x # 加载MNIST数据集 train_dataset = datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transforms.ToTensor()) # 定义训练和测试数据加载器 batch_size = 64 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device) targets = targets.to(device) # 前向传播 scores = model(data) loss = criterion(scores, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}') # 在测试集上评估模型 def test_model(model, test_loader): model.eval() num_correct = 0 num_samples = 0 with torch.no_grad(): for data, targets in test_loader: data = data.to(device) targets = targets.to(device) scores = model(data) _, predictions = scores.max(1) num_correct += (predictions == targets).sum() num_samples += predictions.size(0) accuracy = num_correct / num_samples print(f'Test Accuracy: {accuracy*100:.2f}%') test_model(model, test_loader) 这是一个简单的CNN模型,可用于MNIST手写数字识别任务。你可以根据需要调整模型结构和超参数来提高准确率。
当然可以!以下是基于PyTorch实现手写数字识别的LeNet代码示例: python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets, transforms # 定义LeNet神经网络模型 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.fc1 = nn.Linear(16*4*4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 16*4*4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x # 数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载数据集 trainset = datasets.MNIST(root='MNIST_data/', train=True, download=True, transform=transform) testset = datasets.MNIST(root='MNIST_data/', train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) # 初始化模型、损失函数和优化器 model = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(),lr=0.001) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch [%d/%d], Loss: %.4f' % (epoch + 1, 10, running_loss / len(trainloader))) # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 此代码演示了如何使用PyTorch实现手写数字识别的LeNet神经网络,并在MNIST数据集上进行训练和测试。请注意,MNIST数据集是一个包含手写数字的标准数据集,用于训练和评估机器学习模型。 希望这可以帮助你开始理解和构建基于深度学习的手写数字识别模型。
好的,以下是一段 PyTorch 实现的手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) # 加载数据集,进行数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 初始化网络,定义损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练网络 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999:
PyTorch是一个开源的机器学习框架,可以用于构建深度学习模型。手写数字识别是一个常见的机器学习任务,可以使用PyTorch来实现。 首先,你需要准备训练和测试数据集。在PyTorch中,可以使用TorchVision库来加载和预处理数据。通过使用TorchVision的transforms模块,你可以对图像进行各种处理,比如转换为张量、裁剪或标准化。\[1\] 接下来,你可以使用TorchVision提供的MNIST数据集,它包含了大量的手写数字图像和对应的标签。你可以使用torchvision.datasets.MNIST来加载数据集,并使用transforms.Compose来组合多个数据处理操作。\[3\] 然后,你可以定义一个神经网络模型来进行手写数字识别。你可以使用PyTorch的torch.nn模块来构建模型。可以选择使用卷积神经网络(CNN)来提取图像特征,并使用全连接层进行分类。你可以定义一个继承自torch.nn.Module的类,并在其中定义模型的结构和前向传播方法。 在训练过程中,你可以使用PyTorch的torch.optim模块来选择优化算法,并使用torch.nn模块中的损失函数来计算模型的损失。通过迭代训练数据集,不断调整模型的参数,使得模型能够更好地预测手写数字。 最后,你可以使用训练好的模型对测试数据进行预测,并评估模型的性能。可以使用torch.utils.data.DataLoader来加载测试数据集,并使用模型的forward方法来进行预测。可以使用准确率等指标来评估模型的性能。 综上所述,你可以使用PyTorch来实现手写数字识别任务。通过加载和预处理数据集,定义模型结构,选择优化算法和损失函数,迭代训练数据集,最终得到一个能够准确预测手写数字的模型。 #### 引用[.reference_title] - *1* *2* [使用Pytorch实现手写数字识别](https://blog.csdn.net/Jennifer_Love_Frank/article/details/120162483)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [用PyTorch实现MNIST手写数字识别(非常详细)](https://blog.csdn.net/sxf1061700625/article/details/105870851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

pytorch三层全连接层实现手写字母识别方式

今天小编就为大家分享一篇pytorch三层全连接层实现手写字母识别方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Pytorch 使用CNN图像分类的实现

需求 在4*4的图片中,比较外围黑色... 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层 代码 import torch import torchvision import torchvision.transforms as transforms import numpy as np

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

今天小编就为大家分享一篇用Pytorch训练CNN(数据集MNIST,使用GPU的方法),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

安全文明监理实施细则_工程施工土建监理资料建筑监理工作规划方案报告_监理实施细则.ppt

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

typeerror: invalid argument(s) 'encoding' sent to create_engine(), using con

这个错误通常是由于使用了错误的参数或参数格式引起的。create_engine() 方法需要连接数据库时使用的参数,例如数据库类型、用户名、密码、主机等。 请检查你的代码,确保传递给 create_engine() 方法的参数是正确的,并且符合参数的格式要求。例如,如果你正在使用 MySQL 数据库,你需要传递正确的数据库类型、主机名、端口号、用户名、密码和数据库名称。以下是一个示例: ``` from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@hos

数据库课程设计食品销售统计系统.doc

数据库课程设计食品销售统计系统.doc

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�