用python写一段基于GAN的图像去雾代码

时间: 2024-05-05 17:22:07 浏览: 12
好的,这里是一份基于GAN的图像去雾代码: 首先,我们需要导入一些必要的库: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np from PIL import Image ``` 接着,我们需要定义一些超参数: ```python batch_size = 32 lr = 0.0002 beta1 = 0.5 epochs = 50 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ``` 然后,我们需要构建生成器和判别器: ```python class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(100, 384 * 8 * 8) self.conv1 = nn.ConvTranspose2d(384, 192, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(192) self.conv2 = nn.ConvTranspose2d(192, 96, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(96) self.conv3 = nn.ConvTranspose2d(96, 3, kernel_size=5, stride=2, padding=2) self.tanh = nn.Tanh() def forward(self, x): x = self.fc1(x) x = x.view(-1, 384, 8, 8) x = nn.functional.relu(self.bn1(self.conv1(x))) x = nn.functional.relu(self.bn2(self.conv2(x))) x = self.tanh(self.conv3(x)) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv1 = nn.Conv2d(3, 96, kernel_size=5, stride=2, padding=2) self.conv2 = nn.Conv2d(96, 192, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(192) self.conv3 = nn.Conv2d(192, 384, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(384) self.fc1 = nn.Linear(384 * 8 * 8, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.bn2(self.conv2(x))) x = nn.functional.relu(self.bn3(self.conv3(x))) x = x.view(-1, 384 * 8 * 8) x = self.sigmoid(self.fc1(x)) return x ``` 接着,我们需要定义一些辅助函数: ```python def denorm(x): out = (x + 1) / 2 return out.clamp(0, 1) def show_img(img): img = denorm(img) npimg = img.detach().numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() def save_img(img, path): img = denorm(img) npimg = img.detach().numpy() npimg = np.transpose(npimg, (1, 2, 0)) npimg = npimg * 255 npimg = npimg.astype(np.uint8) im = Image.fromarray(npimg) im.save(path) ``` 然后,我们需要加载数据集: ```python transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) train_dataset = ImageFolder('./data/train', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) ``` 接下来,我们需要初始化生成器和判别器,并定义优化器和损失函数: ```python G = Generator().to(device) D = Discriminator().to(device) G.apply(weights_init_normal) D.apply(weights_init_normal) optimizer_G = optim.Adam(G.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_D = optim.Adam(D.parameters(), lr=lr, betas=(beta1, 0.999)) criterion = nn.BCELoss() ``` 在训练过程中,我们需要先生成一些随机噪声,然后将其输入到生成器中生成图像。接着,我们将生成的图像和真实图像一起输入到判别器中进行判别。然后,我们计算生成器和判别器的损失,并更新参数。最后,我们输出一些图像来观察训练的效果: ```python for epoch in range(epochs): for i, (imgs, _) in enumerate(train_loader): # Adversarial ground truths valid = torch.ones(imgs.size(0), 1).to(device) fake = torch.zeros(imgs.size(0), 1).to(device) # Configure input real_imgs = imgs.to(device) # Train Generator optimizer_G.zero_grad() # Sample noise as generator input z = torch.randn(imgs.size(0), 100).to(device) # Generate a batch of images gen_imgs = G(z) # Loss measures generator's ability to fool the discriminator g_loss = criterion(D(gen_imgs), valid) g_loss.backward() optimizer_G.step() # Train Discriminator optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples real_loss = criterion(D(real_imgs), valid) fake_loss = criterion(D(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() batches_done = epoch * len(train_loader) + i if batches_done % 50 == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, epochs, i, len(train_loader), d_loss.item(), g_loss.item())) if batches_done % 400 == 0: save_img(gen_imgs.data[:25], "images/%d.png" % batches_done) ``` 注意,我们在每个 epoch 结束后输出一些图像来观察训练的效果。 完整的代码如下所示: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np from PIL import Image batch_size = 32 lr = 0.0002 beta1 = 0.5 epochs = 50 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(100, 384 * 8 * 8) self.conv1 = nn.ConvTranspose2d(384, 192, kernel_size=5, stride=2, padding=2) self.bn1 = nn.BatchNorm2d(192) self.conv2 = nn.ConvTranspose2d(192, 96, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(96) self.conv3 = nn.ConvTranspose2d(96, 3, kernel_size=5, stride=2, padding=2) self.tanh = nn.Tanh() def forward(self, x): x = self.fc1(x) x = x.view(-1, 384, 8, 8) x = nn.functional.relu(self.bn1(self.conv1(x))) x = nn.functional.relu(self.bn2(self.conv2(x))) x = self.tanh(self.conv3(x)) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv1 = nn.Conv2d(3, 96, kernel_size=5, stride=2, padding=2) self.conv2 = nn.Conv2d(96, 192, kernel_size=5, stride=2, padding=2) self.bn2 = nn.BatchNorm2d(192) self.conv3 = nn.Conv2d(192, 384, kernel_size=5, stride=2, padding=2) self.bn3 = nn.BatchNorm2d(384) self.fc1 = nn.Linear(384 * 8 * 8, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.bn2(self.conv2(x))) x = nn.functional.relu(self.bn3(self.conv3(x))) x = x.view(-1, 384 * 8 * 8) x = self.sigmoid(self.fc1(x)) return x def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def denorm(x): out = (x + 1) / 2 return out.clamp(0, 1) def show_img(img): img = denorm(img) npimg = img.detach().numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() def save_img(img, path): img = denorm(img) npimg = img.detach().numpy() npimg = np.transpose(npimg, (1, 2, 0)) npimg = npimg * 255 npimg = npimg.astype(np.uint8) im = Image.fromarray(npimg) im.save(path) transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) train_dataset = ImageFolder('./data/train', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) G = Generator().to(device) D = Discriminator().to(device) G.apply(weights_init_normal) D.apply(weights_init_normal) optimizer_G = optim.Adam(G.parameters(), lr=lr, betas=(beta1, 0.999)) optimizer_D = optim.Adam(D.parameters(), lr=lr, betas=(beta1, 0.999)) criterion = nn.BCELoss() for epoch in range(epochs): for i, (imgs, _) in enumerate(train_loader): # Adversarial ground truths valid = torch.ones(imgs.size(0), 1).to(device) fake = torch.zeros(imgs.size(0), 1).to(device) # Configure input real_imgs = imgs.to(device) # Train Generator optimizer_G.zero_grad() # Sample noise as generator input z = torch.randn(imgs.size(0), 100).to(device) # Generate a batch of images gen_imgs = G(z) # Loss measures generator's ability to fool the discriminator g_loss = criterion(D(gen_imgs), valid) g_loss.backward() optimizer_G.step() # Train Discriminator optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples real_loss = criterion(D(real_imgs), valid) fake_loss = criterion(D(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() batches_done = epoch * len(train_loader) + i if batches_done % 50 == 0: print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, epochs, i, len(train_loader), d_loss.item(), g_loss.item())) if batches_done % 400 == 0: save_img(gen_imgs.data[:25], "images/%d.png" % batches_done) ```

相关推荐

最新推荐

recommend-type

python基于K-means聚类算法的图像分割

主要介绍了python基于K-means聚类算法的图像分割,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python计算机视觉编程——基于BOF的图像检索(附代码) 计算机视觉.pdf

python计算机视觉编程——基于BOF的图像检索(附代码) 计算机视觉.pdf
recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

今天小编就为大家分享一篇python-opencv获取二值图像轮廓及中心点坐标的代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

5行Python代码实现图像分割的步骤详解

语义分割:将图像中每个像素赋予一个类别标签,用不同的颜色来表示; 实例分割:无需对每个像素进行标记,只需要找到感兴趣物体的边缘轮廓。 图像分割通常应用如下所示: 专业检测:应用于专业场景的图像分析,...
recommend-type

python使用pil进行图像处理(等比例压缩、裁剪)实例代码

主要介绍了python使用pil进行图像处理(等比例压缩、裁剪)实例代码,首先介绍了pil的相关内容,然后分享了实例代码,具有一定借鉴价值,需要的朋友可以参考下。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。