python实现trans系列知识图谱嵌入代码
时间: 2023-07-03 21:31:11 浏览: 283
知识图谱构建代码,python
首先,需要安装TransE、TransH、TransR、TransD等知识图谱嵌入模型的Python包,可以使用pip install命令安装相应的包。
以下是TransE知识图谱嵌入模型的Python实现代码:
```python
import numpy as np
import tensorflow as tf
class TransE:
def __init__(self, entity_num, relation_num, dim, margin, learning_rate):
self.entity_num = entity_num
self.relation_num = relation_num
self.dim = dim
self.margin = margin
self.learning_rate = learning_rate
self.ent_embeddings = tf.get_variable(name="ent_embeddings", shape=[self.entity_num, self.dim], initializer=tf.contrib.layers.xavier_initializer(uniform=False))
self.rel_embeddings = tf.get_variable(name="rel_embeddings", shape=[self.relation_num, self.dim], initializer=tf.contrib.layers.xavier_initializer(uniform=False))
self.ent_input = tf.placeholder(dtype=tf.int32, shape=[None])
self.rel_input = tf.placeholder(dtype=tf.int32, shape=[None])
self.ent_output = tf.placeholder(dtype=tf.int32, shape=[None])
self.pos_h = tf.nn.embedding_lookup(self.ent_embeddings, self.ent_input)
self.pos_t = tf.nn.embedding_lookup(self.ent_embeddings, self.ent_output)
self.pos_r = tf.nn.embedding_lookup(self.rel_embeddings, self.rel_input)
self.neg_h = tf.placeholder(dtype=tf.int32, shape=[None])
self.neg_t = tf.placeholder(dtype=tf.int32, shape=[None])
self.neg_pos_h = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_h)
self.neg_pos_t = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_t)
self.predict = tf.reduce_sum(tf.abs(self.pos_h + self.pos_r - self.pos_t), axis=1, keepdims=True)
self.loss = tf.reduce_sum(tf.maximum(self.predict - tf.reduce_sum(tf.abs(self.neg_pos_h + self.pos_r - self.pos_t), axis=1, keepdims=True) + self.margin, 0))
self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def train(self, batch_h, batch_t, batch_r, batch_nh, batch_nt):
_, loss = self.sess.run([self.train_op, self.loss], feed_dict={
self.ent_input: batch_h,
self.rel_input: batch_r,
self.ent_output: batch_t,
self.neg_h: batch_nh,
self.neg_t: batch_nt
})
return loss
def test(self, h, t, r):
return self.sess.run(self.predict, feed_dict={
self.ent_input: h,
self.rel_input: r,
self.ent_output: t
})
```
其中,entity_num表示实体的数量,relation_num表示关系的数量,dim表示嵌入维度,margin表示损失函数中的边际值,learning_rate表示学习率。
TransE模型中的实体和关系都被嵌入到dim维空间中,损失函数通过最小化正样本和负样本之间的距离来学习嵌入向量。
batch_h、batch_t和batch_r分别表示一批训练数据中的头实体、尾实体和关系,batch_nh和batch_nt分别表示一批负样本中的头实体和尾实体。
使用以下代码可以创建一个TransE模型的实例并进行训练:
```python
model = TransE(entity_num, relation_num, dim, margin, learning_rate)
for epoch in range(num_epochs):
for i in range(num_batches):
batch_h, batch_t, batch_r, batch_nh, batch_nt = generate_batch(batch_size)
loss = model.train(batch_h, batch_t, batch_r, batch_nh, batch_nt)
print("Epoch:", epoch, "Loss:", loss)
```
其中,generate_batch函数用于生成一个batch的训练数据和负样本。训练过程中,每个epoch会迭代num_batches次,每次迭代使用一个batch的数据进行训练。
阅读全文