pytorch ssim损失函数
时间: 2023-06-30 20:25:26 浏览: 135
PyTorch中的SSIM损失函数可以使用`torchvision`库中的`SSIM`模块来实现,代码如下:
```python
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import normalize
from torchvision.transforms.functional import resize
def ssim_loss(img1, img2, window_size=11, size_average=True, full=False, val_range=None):
"""
计算两个图像之间的结构相似度损失。
Args:
img1 (PIL Image or Tensor): 输入图像1
img2 (PIL Image or Tensor): 输入图像2
window_size (int): 窗口大小。默认值为11。
size_average (bool): 如果为True,则对每个像素的损失进行平均。默认值为True。
full (bool): 如果为True,则返回完整的SSIM值,否则只返回平均值。默认值为False。
val_range (float): 值范围。默认值为None,表示使用数据类型的默认值范围。
Returns:
ssim_value (float): SSIM损失值
"""
# 将图像转换为Tensor
if isinstance(img1, torch.Tensor) and isinstance(img2, torch.Tensor):
img1, img2 = img1.clone(), img2.clone()
elif isinstance(img1, torch.Tensor):
img1 = img1.clone()
img2 = to_tensor(img2)
elif isinstance(img2, torch.Tensor):
img1 = to_tensor(img1)
img2 = img2.clone()
else:
img1 = to_tensor(img1)
img2 = to_tensor(img2)
# 将Tensor转换为浮点型
img1 = img1.float()
img2 = img2.float()
# 计算均值和方差
K1 = 0.01
K2 = 0.03
L = val_range if val_range is not None else img1.max()
C1 = (K1 * L) ** 2
C2 = (K2 * L) ** 2
window = create_window(window_size, 1)
# 计算均值和方差
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=img1.shape[1])
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=img1.shape[1])
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=img1.shape[1]) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=img1.shape[1]) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=img1.shape[1]) - mu1_mu2
# 计算SSIM
ssim_num = (2 * mu1_mu2 + C1) * (2 * sigma12 + C2)
ssim_den = (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
ssim_value = ssim_num / ssim_den
# 计算平均值
if size_average:
ssim_value = ssim_value.mean()
else:
ssim_value = ssim_value.mean(1).mean(1).mean(1)
# 返回完整的SSIM值或平均值
if full:
return ssim_value, ssim_num, ssim_den
else:
return ssim_value.item()
```
其中,`create_window`函数用于创建一个平均池化窗口,代码如下:
```python
def create_window(window_size, channel):
"""
创建一个一维的池化窗口
"""
window = torch.ones((channel, 1, window_size, window_size))
window /= (window_size ** 2)
return window
```
使用方法如下:
```python
from PIL import Image
from torchvision.transforms.functional import to_tensor
img1 = Image.open('img1.png')
img2 = Image.open('img2.png')
ssim_loss(to_tensor(img1), to_tensor(img2))
```
需要注意的是,SSIM损失函数是一种结构相似度损失函数,适用于图像质量评估和图像处理领域。它可以衡量两个图像之间的相似度,其值越接近1,表示两个图像越相似。
阅读全文