import sympy as sp init_print() x,y,z=sp.symbols('x y z') f=(x**2+y**2-1)(y**2+z**2-1)(x**2+z**2-1)-1 修改这段代码
时间: 2023-07-23 12:39:23 浏览: 167
这段代码中的 `init_print()` 应该改为 `sp.init_printing()`,即:
```python
import sympy as sp
sp.init_printing()
x, y, z = sp.symbols('x y z')
f = (x**2 + y**2 - 1)*(y**2 + z**2 - 1)*(x**2 + z**2 - 1) - 1
```
这样修改之后,使用 `sp.init_printing()` 函数可以更好地显示符号计算的结果。同时,修改了表达式的格式,使其更易读。
相关问题
def QR(A): def householder(a): n = len(a) v = np.zeros(n) v[0] = np.linalg.norm(a) if a[0] < 0: v[0] = -v[0] v = v + a v = v / np.linalg.norm(v) H = np.eye(n) - 2 * np.outer(v, v) return H def qr_factorization(A): m, n = A.shape Q = np.eye(m) R = A.copy() for j in range(min(m, n)): a = R[j:, j] H = np.eye(m) H[j:, j:] = householder(a) Q = Q @ H.T R = H @ R return Q, R Q, R = qr_factorization(A) b = sp.Matrix(sp.symbols('a1:11')) # 求解Ly=b中的y y = sp.zeros(10, 1) # 初始化y y = Q.T@b # 求解Ux=y中的x x = sp.zeros(10, 1) # 初始化x for i in range(9, -1, -1): x[i] = y[i] for j in range(i+1, 10): x[i] -= R[i, j] * x[j] x[i] /= R[i, i] matrice_coeff = sp.Matrix(np.zeros((10, 10))) for i in range(10): for j in range(10): matrice_coeff[i, j] = x[i].coeff(sp.Symbol('a{}'.format(j + 1))) return(matrice_coeff)修改这段函数,让def里面不要再嵌套def
可以将内部的两个函数 `householder` 和 `qr_factorization` 移到外部并改为类的方法,这样就不需要嵌套 `def` 了。以下是修改后的代码:
```python
import numpy as np
import sympy as sp
class QRDecomposition:
def __init__(self, A):
self.A = A
self.m, self.n = A.shape
self.Q = np.eye(self.m)
self.R = self.A.copy()
def householder(self, a):
v = np.zeros(self.n)
v[0] = np.linalg.norm(a)
if a[0] < 0:
v[0] = -v[0]
v = v + a
v = v / np.linalg.norm(v)
H = np.eye(self.m) - 2 * np.outer(v, v)
return H
def qr_factorization(self):
for j in range(min(self.m, self.n)):
a = self.R[j:, j]
H = np.eye(self.m)
H[j:, j:] = self.householder(a)
self.Q = self.Q @ H.T
self.R = H @ self.R
def solve(self, b):
y = self.Q.T @ b
x = np.zeros(self.n)
for i in range(self.n - 1, -1, -1):
x[i] = y[i]
for j in range(i + 1, self.n):
x[i] -= self.R[i, j] * x[j]
x[i] /= self.R[i, i]
return x
def get_coefficients(self, b):
self.qr_factorization()
x = self.solve(b)
matrice_coeff = sp.Matrix(np.zeros((self.n, self.n)))
for i in range(self.n):
for j in range(self.n):
matrice_coeff[i, j] = x[i].coeff(sp.Symbol('a{}'.format(j + 1)))
return matrice_coeff
```
这样,我们可以通过创建 `QRDecomposition` 类的实例来调用它的方法。例如,可以按如下方式使用:
```python
A = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[2, 3, 4, 5, 6, 7, 8, 9, 10, 1],
[3, 4, 5, 6, 7, 8, 9, 10, 1, 2],
[4, 5, 6, 7, 8, 9, 10, 1, 2, 3],
[5, 6, 7, 8, 9, 10, 1, 2, 3, 4],
[6, 7, 8, 9, 10, 1, 2, 3, 4, 5],
[7, 8, 9, 10, 1, 2, 3, 4, 5, 6],
[8, 9, 10, 1, 2, 3, 4, 5, 6, 7],
[9, 10, 1, 2, 3, 4, 5, 6, 7, 8],
[10, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
b = sp.Matrix(sp.symbols('a1:11'))
qr = QRDecomposition(A)
matrice_coeff = qr.get_coefficients(b)
print(matrice_coeff)
```
f = (x**2 + y**2 - 1)*(y**2 + z**2 - 1)*(x**2 + z**2 - 1) - 1这个平面上任意一点的法向量怎么算
对于给定的函数$f(x,y,z) = (x^2+y^2-1)(y^2+z^2-1)(x^2+z^2-1)-1$,我们可以通过计算其梯度向量来求得其在某点的法向量。具体来说,平面上任意一点$(x_0,y_0,z_0)$的法向量$\vec{n}$可以通过计算该点处梯度向量$\nabla f(x_0,y_0,z_0)$得到。
具体代码如下所示:
```python
import sympy as sp
sp.init_printing()
x, y, z = sp.symbols('x y z')
f = (x**2 + y**2 - 1)*(y**2 + z**2 - 1)*(x**2 + z**2 - 1) - 1
grad_f = sp.Matrix([sp.diff(f, var) for var in [x, y, z]])
x0, y0, z0 = 1, 1, 1 # 假设该平面上任意一点为(1,1,1)
n = grad_f.subs({x: x0, y: y0, z: z0})
print("Normal vector of the plane at point (1,1,1):")
sp.pprint(n)
```
这段代码中,我们先定义了函数$f(x,y,z)$,然后使用SymPy库中的`diff`函数计算其梯度向量`grad_f`。接着,我们假设该平面上任意一点为$(1,1,1)$,并通过`subs`函数将`grad_f`中的$x,y,z$替换成$1$,以求得该点处的梯度向量`n`。最后通过`pprint`函数美化输出结果。
需要注意的是,这里求得的梯度向量仅在$(1,1,1)$处是平面的法向量,如果需要求解其他点的法向量,需要将$(1,1,1)$替换成对应的坐标值。
阅读全文