使用直方图均衡化和自适应直方图均衡化分别对图像(Fig2-1)进行增强处理。注:直方图均衡化使用函数cv.equalizeHist( );自适应直方图均衡化使用的函数主要为cv2.createCLAHE()
时间: 2024-06-16 12:06:25 浏览: 149
实验4 直方图1
直方图均衡化和自适应直方图均衡化是两种常用的图像增强方法,可以提高图像的对比度和细节。下面是它们的介绍:
1. 直方图均衡化:
直方图均衡化是一种全局的图像增强方法,通过重新分布图像的像素值来增强图像的对比度。它的原理是将图像的直方图变成一个均匀分布的直方图,从而使得图像中的像素值更加均匀分布。在OpenCV中,可以使用函数cv.equalizeHist()来实现直方图均衡化。
2. 自适应直方图均衡化:
自适应直方图均衡化是一种局部的图像增强方法,它将图像分成多个小区域,并对每个小区域进行直方图均衡化。这样可以避免全局直方图均衡化带来的过度增强或者细节丢失的问题。在OpenCV中,可以使用函数cv2.createCLAHE()来创建一个自适应直方图均衡化器,然后使用该均衡化器对图像进行增强处理。
阅读全文