class CNN(nn.Module): def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, embed_drop: float): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.conv = nn.Conv1d(in_channels=embed_dim, out_channels=hidden_dim, kernel_size=3, padding=1) self.embed_dropout = nn.Dropout(embed_drop) self.linear = nn.Linear(hidden_dim, embed_dim) def forward(self, x, *args): x = self.embedding(x) x = self.embed_dropout(x) x = x.transpose(1, 2) x = self.conv(x).transpose(1, 2).relu() x = self.linear(x) probs = torch.matmul(x, self.embedding.weight.t()) return probs
时间: 2023-12-21 15:04:37 浏览: 166
这是一个卷积神经网络(CNN)的PyTorch实现。它包含以下组件:
1. `nn.Embedding`:嵌入层,用于将输入的词索引转换为词向量表示。
2. `nn.Conv1d`:一维卷积层,用于提取输入序列中的特征。
3. `nn.Dropout`:用于在训练时对嵌入层的输出进行随机失活,以减少过拟合。
4. `nn.Linear`:全连接层,用于将卷积层的输出转换为指定维度的向量。
在前向传播过程中,输入序列首先通过嵌入层进行转换,然后进行随机失活。接下来,通过转置操作将嵌入层的输出调整为卷积层的输入格式,然后通过卷积层提取特征。卷积层的输出再通过转置操作调整为线性层的输入格式,然后通过线性层将特征向量转换为指定维度的向量。最后,通过矩阵乘法将输出向量与嵌入层的权重进行乘法操作,得到每个词的概率分布。
这个CNN模型可以用于文本分类、情感分析等任务。在训练过程中,我们使用交叉熵损失函数对模型进行训练,采用随机梯度下降(SGD)或Adam优化器进行参数更新。
相关问题
class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x
这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。
该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。
在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。
class PoetryModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3) self.classifier=nn.Sequential( nn.Linear(self.hidden_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, 2048), nn.ReLU(inplace=True), nn.Linear(2048, vocab_size) ) def forward(self, input, hidden = None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() c_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() else: h_0, c_0 = hidden embeds = self.embedding(input) output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.classifier(output.view(seq_len * batch_size, -1)) return output, hidden 解释该段代码
这段代码是一个 PyTorch 模型类 `PoetryModel` 的定义,该模型用于生成诗歌文本。以下是该模型的详细解释:
1. `__init__(self, vocab_size, embedding_dim, hidden_dim)`:该函数是类的初始化函数,它定义了该模型的各个层及其参数,其中 `vocab_size` 表示词汇表的大小,`embedding_dim` 表示嵌入层的维度,`hidden_dim` 表示 LSTM 隐藏层的维度。
2. `super(PoetryModel, self).__init__()`:该语句调用了父类 `nn.Module` 的初始化函数,以便能够正确地构建模型。
3. `self.hidden_dim = hidden_dim`:该语句将隐藏层维度保存在实例变量 `self.hidden_dim` 中。
4. `self.embedding = nn.Embedding(vocab_size, embedding_dim)`:该语句定义了一个嵌入层,用于将词汇表中的每个词转换成一个固定维度的向量表示。
5. `self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3)`:该语句定义了一个 LSTM 层,用于学习输入序列的长期依赖关系。其中 `num_layers` 参数表示 LSTM 层的层数。
6. `self.classifier = nn.Sequential(...)`:该语句定义了一个分类器,用于将 LSTM 输出的特征向量映射到词汇表中每个词的概率分布。
7. `forward(self, input, hidden=None)`:该函数定义了模型的前向传播过程。其中 `input` 表示输入的序列,`hidden` 表示 LSTM 的初始隐藏状态。
8. `seq_len, batch_size = input.size()`:该语句获取输入序列的长度和批次大小。
9. `if hidden is None: ... else: ...`:该语句根据是否提供了初始隐藏状态,决定是否使用零向量作为初始隐藏状态。
10. `embeds = self.embedding(input)`:该语句将输入序列中的每个词都通过嵌入层转换成向量表示。
11. `output, hidden = self.lstm(embeds, (h_0, c_0))`:该语句将嵌入层的输出输入到 LSTM 层中,并获取 LSTM 输出的特征向量和最终的隐藏状态。
12. `output = self.classifier(output.view(seq_len * batch_size, -1))`:该语句将 LSTM 输出的特征向量通过分类器进行映射,并将其转换成形状为 `(seq_len * batch_size, vocab_size)` 的张量。
13. `return output, hidden`:该语句返回模型的输出和最终的隐藏状态。其中输出是一个张量,表示每个时间步的词汇表中每个词的概率分布,而隐藏状态则是一个元组,表示 LSTM 的最终