class CNN(nn.Module): def __init__(self, vocab_size: int, embed_dim: int, hidden_dim: int, embed_drop: float): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.conv = nn.Conv1d(in_channels=embed_dim, out_channels=hidden_dim, kernel_size=3, padding=1) self.embed_dropout = nn.Dropout(embed_drop) self.linear = nn.Linear(hidden_dim, embed_dim) def forward(self, x, *args): x = self.embedding(x) x = self.embed_dropout(x) x = x.transpose(1, 2) x = self.conv(x).transpose(1, 2).relu() x = self.linear(x) probs = torch.matmul(x, self.embedding.weight.t()) return probs

时间: 2023-12-21 13:04:37 浏览: 45
这是一个卷积神经网络(CNN)的PyTorch实现。它包含以下组件: 1. `nn.Embedding`:嵌入层,用于将输入的词索引转换为词向量表示。 2. `nn.Conv1d`:一维卷积层,用于提取输入序列中的特征。 3. `nn.Dropout`:用于在训练时对嵌入层的输出进行随机失活,以减少过拟合。 4. `nn.Linear`:全连接层,用于将卷积层的输出转换为指定维度的向量。 在前向传播过程中,输入序列首先通过嵌入层进行转换,然后进行随机失活。接下来,通过转置操作将嵌入层的输出调整为卷积层的输入格式,然后通过卷积层提取特征。卷积层的输出再通过转置操作调整为线性层的输入格式,然后通过线性层将特征向量转换为指定维度的向量。最后,通过矩阵乘法将输出向量与嵌入层的权重进行乘法操作,得到每个词的概率分布。 这个CNN模型可以用于文本分类、情感分析等任务。在训练过程中,我们使用交叉熵损失函数对模型进行训练,采用随机梯度下降(SGD)或Adam优化器进行参数更新。
相关问题

class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x

这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。 该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。 在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。

class PoetryModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3) self.classifier=nn.Sequential( nn.Linear(self.hidden_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, 2048), nn.ReLU(inplace=True), nn.Linear(2048, vocab_size) ) def forward(self, input, hidden = None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() c_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() else: h_0, c_0 = hidden embeds = self.embedding(input) output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.classifier(output.view(seq_len * batch_size, -1)) return output, hidden 解释该段代码

这段代码是一个 PyTorch 模型类 `PoetryModel` 的定义,该模型用于生成诗歌文本。以下是该模型的详细解释: 1. `__init__(self, vocab_size, embedding_dim, hidden_dim)`:该函数是类的初始化函数,它定义了该模型的各个层及其参数,其中 `vocab_size` 表示词汇表的大小,`embedding_dim` 表示嵌入层的维度,`hidden_dim` 表示 LSTM 隐藏层的维度。 2. `super(PoetryModel, self).__init__()`:该语句调用了父类 `nn.Module` 的初始化函数,以便能够正确地构建模型。 3. `self.hidden_dim = hidden_dim`:该语句将隐藏层维度保存在实例变量 `self.hidden_dim` 中。 4. `self.embedding = nn.Embedding(vocab_size, embedding_dim)`:该语句定义了一个嵌入层,用于将词汇表中的每个词转换成一个固定维度的向量表示。 5. `self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3)`:该语句定义了一个 LSTM 层,用于学习输入序列的长期依赖关系。其中 `num_layers` 参数表示 LSTM 层的层数。 6. `self.classifier = nn.Sequential(...)`:该语句定义了一个分类器,用于将 LSTM 输出的特征向量映射到词汇表中每个词的概率分布。 7. `forward(self, input, hidden=None)`:该函数定义了模型的前向传播过程。其中 `input` 表示输入的序列,`hidden` 表示 LSTM 的初始隐藏状态。 8. `seq_len, batch_size = input.size()`:该语句获取输入序列的长度和批次大小。 9. `if hidden is None: ... else: ...`:该语句根据是否提供了初始隐藏状态,决定是否使用零向量作为初始隐藏状态。 10. `embeds = self.embedding(input)`:该语句将输入序列中的每个词都通过嵌入层转换成向量表示。 11. `output, hidden = self.lstm(embeds, (h_0, c_0))`:该语句将嵌入层的输出输入到 LSTM 层中,并获取 LSTM 输出的特征向量和最终的隐藏状态。 12. `output = self.classifier(output.view(seq_len * batch_size, -1))`:该语句将 LSTM 输出的特征向量通过分类器进行映射,并将其转换成形状为 `(seq_len * batch_size, vocab_size)` 的张量。 13. `return output, hidden`:该语句返回模型的输出和最终的隐藏状态。其中输出是一个张量,表示每个时间步的词汇表中每个词的概率分布,而隐藏状态则是一个元组,表示 LSTM 的最终

相关推荐

import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错

最新推荐

recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

299-教育行业信息化与数据平台建设分享.pptx

299-教育行业信息化与数据平台建设分享.pptx
recommend-type

基于Springboot+Vue酒店客房入住管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

时间复杂度的一些相关资源

时间复杂度是计算机科学中用来评估算法效率的一个重要指标。它表示了算法执行时间随输入数据规模增长而变化的趋势。当我们比较不同算法的时间复杂度时,实际上是在比较它们在不同输入规模下的执行效率。 时间复杂度通常用大O符号来表示,它描述了算法执行时间上限的增长率。例如,O(n)表示算法执行时间与输入数据规模n呈线性关系,而O(n^2)则表示算法执行时间与n的平方成正比。当n增大时,O(n^2)算法的执行时间会比O(n)算法增长得更快。 在比较时间复杂度时,我们主要关注复杂度的增长趋势,而不是具体的执行时间。这是因为不同计算机硬件、操作系统和编译器等因素都会影响算法的实际执行时间,而时间复杂度则提供了一个与具体实现无关的评估标准。 一般来说,时间复杂度越低,算法的执行效率就越高。因此,在设计和选择算法时,我们通常希望找到时间复杂度尽可能低的方案。例如,在排序算法中,冒泡排序的时间复杂度为O(n^2),而快速排序的时间复杂度在平均情况下为O(nlogn),因此在处理大规模数据时,快速排序通常比冒泡排序更高效。 总之,时间复杂度是评估算法效率的重要工具,它帮助我们了解算法在不同输入规模下的性
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。