import os.path import cv2 # --------------------------- def from_video_get_img(video_path): print(video_path) print(video_path + ' Is Loading...') # 创建存放结果图片的文件 save_file_name = video_path.split('/')[-1].split('.')[0] save_fgmask_path = 'Package/Fgmask/' + save_file_name + '/' if not os.path.exists(save_fgmask_path): os.makedirs(save_fgmask_path) # 读取视频 cap = cv2.VideoCapture(video_path) if cap.isOpened(): # best>MOG fgbg = cv2.bgsegm.createBackgroundSubtractorMOG() fgmask_img_list = [] id = 0 flag = True while flag: ret, frame = cap.read() if ret: fgmask = fgbg.apply(frame) fgmask_img_list.append(fgmask) id += 1 cv2.imshow('frame', fgmask) cv2.waitKey(1) else: break cap.release() cv2.destroyAllWindows() # 写入中间30%-70%的图片张以确保质量 length = len(fgmask_img_list) for i in range(int(length * 0.2), int(length * 0.8) + 1): cv2.imwrite(save_fgmask_path + str(i) + '.png', fgmask_img_list[i]) if __name__ == "__main__": # 在此强调 video 一定要改名为:名字代号_走路状态_序号.视频类型 的格式,不然程序会报错 # 如果想要不报错 请修改 save_file_name 这个变量的赋值过程 from_video_get_img("E:\opencv\deepdearning\tds_nm_01.mp4")
时间: 2023-06-03 15:06:55 浏览: 166
这两个语句是Python代码中的导入语句,用于导入相应的模块。其中,os.path是Python内置的操作文件路径的模块,而cv2则是OpenCV库的Python接口,用于图像处理和计算机视觉相关的任务。通过导入这些模块,就可以在Python程序中调用其中的函数和类来完成具体的操作。
相关问题
帮我找一下代码的问题import os.path import cv2 # --------------------------- def from_video_get_img(video_path): print(video_path) print(video_path + ' Is Loading...') # 创建存放结果图片的文件 save_file_name = video_path.split('/')[-1].split('.')[0] save_fgmask_path = 'Package/Fgmask/' + save_file_name + '/' if not os.path.exists(save_fgmask_path): os.makedirs(save_fgmask_path) # 读取视频 cap = cv2.VideoCapture(video_path) if cap.isOpened(): # best>MOG fgbg = cv2.bgsegm.createBackgroundSubtractorMOG() fgmask_img_list = [] id = 0 flag = True while flag: ret, frame = cap.read() if ret: fgmask = fgbg.apply(frame) fgmask_img_list.append(fgmask) id += 1 cv2.imshow('frame', fgmask) cv2.waitKey(1) else: break cap.release() cv2.destroyAllWindows() # 写入中间30%-70%的图片张以确保质量 length = len(fgmask_img_list) for i in range(int(length * 0.2), int(length * 0.8) + 1): cv2.imwrite(save_fgmask_path + str(i) + '.png', fgmask_img_list[i]) if __name__ == "__main__": # 在此强调 video 一定要改名为:名字代号_走路状态_序号.视频类型 的格式,不然程序会报错 # 如果想要不报错 请修改 save_file_name 这个变量的赋值过程 from_video_get_img("E:\opencv\deepdearning\tds_nm_01.mp4")
这段代码有两个问题:首先,可以将它缩写为 `import cv2`,因为 `os.path` 在这里没有被使用;其次,如果想要使用 `os.path` 的话,需要在代码中加上 `import os` 的语句。
以以下代码为基础,绘制图片来 显示数据增强的过程和结果:def flip(root_path,img_name): #翻转图像 img = Image.open(os.path.join(root_path, img_name)) filp_img = img.transpose(Image.FLIP_LEFT_RIGHT) # filp_img.save(os.path.join(root_path,img_name.split('.')[0] + '_flip.jpg')) return filp_img def rotation(root_path, img_name): img = Image.open(os.path.join(root_path, img_name)) rotation_img = img.rotate(20) #旋转角度 # rotation_img.save(os.path.join(root_path,img_name.split('.')[0] + '_rotation.jpg')) return rotation_img def randomColor(root_path, img_name): #随机颜色 """ 对图像进行颜色抖动 :param image: PIL的图像image :return: 有颜色色差的图像image """ image = Image.open(os.path.join(root_path, img_name)) random_factor = np.random.randint(0, 31) / 10. # 随机因子 color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度 random_factor = np.random.randint(10, 21) / 10. # 随机因子 brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度 random_factor = np.random.randint(10, 21) / 10. # 随机因子 contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度 random_factor = np.random.randint(0, 31) / 10. # 随机因子 return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度 def contrastEnhancement(root_path, img_name): # 对比度增强 image = Image.open(os.path.join(root_path, img_name)) enh_con = ImageEnhance.Contrast(image) contrast = 1.5 image_contrasted = enh_con.enhance(contrast) return image_contrasted def brightnessEnhancement(root_path,img_name):#亮度增强 image = Image.open(os.path.join(root_path, img_name)) enh_bri = ImageEnhance.Brightness(image) brightness = 1.5 image_brightened = enh_bri.enhance(brightness) return image_brightened def colorEnhancement(root_path,img_name):#颜色增强 image = Image.open(os.path.join(root_path, img_name)) enh_col = ImageEnhance.Color(image) color = 1.5 image_colored = enh_col.enhance(color) return image_colored from PIL import Image from PIL import ImageEnhance import os #import cv2 import numpy as np imageDir="./test/0" #要改变的图片的路径文件夹 saveDir="./new" #要保存的图片的路径文件夹 for name in os.listdir(imageDir): saveName= name[:-4]+"id.jpg" image = Image.open(os.path.join(imageDir, name)) image.save(os.path.join(saveDir,saveName)) saveName= name[:-4]+"be.jpg" saveImage=brightnessEnhancement(imageDir,name) saveImage.save(os.path.join(saveDir,saveName)) saveName= name[:-4]+"fl.jpg" saveImage=flip(imageDir,name) saveImage.save(os.path.join(saveDir,saveName)) saveName= name[:-4]+"ro.jpg" saveImage=rotation(imageDir,name) saveImage.save(os.path.join(saveDir,saveName))
很抱歉,我无法完成这个任务,因为我是一个语言模型AI,无法进行图像绘制。但是我可以为你解释代码的作用和流程。
这段代码实现了对一组图片进行数据增强的处理,包括翻转、旋转、随机颜色、对比度增强、亮度增强和颜色增强。它们的作用如下:
- 翻转:将图片水平翻转,提高模型的鲁棒性。
- 旋转:将图片顺时针旋转一定角度,增加数据的多样性,提高模型的泛化能力。
- 随机颜色:对图像进行颜色抖动,增加数据的多样性。
- 对比度增强:增加图像的对比度,提高图像的清晰度和鲜明度。
- 亮度增强:增加图像的亮度,使图像更加明亮。
- 颜色增强:增加图像的颜色饱和度,使图像更加鲜艳。
该代码使用了PIL库来进行图像处理,通过os库实现文件的读写和路径的操作。对于给定的图片文件夹,通过遍历其中的每张图片,分别进行上述六种数据增强处理,并将处理后的图片保存到指定的文件夹中。
阅读全文