uint8_t id; typedef void (*pFunction)(void); u8 rx_buffer[200]={0,}; volatile u16 rx_count; u8 command_buf[10]={0,}; volatile u8 command_rxcnt = 0; volatile u8 command_rxflag = 0; volatile u8 command_rxover = 0; u8 workmode = 0; u8 workvalue =0; u8 workstate = 0; u8 workstep = 0; u8 worktimes = 0; volatile u8 workcnt = 0; u8 worktimes2 = 0; volatile u8 workcnt2 = 0; volatile u8 workcnt3 = 0; volatile u16 wdgcnt; u8 readback; u8 TEXT_Buffer[4]={0,}; #define SIZE sizeof(TEXT_Buffer) #define FLASH_SAVE_ADDR 0X08010000 u8 datatemp[SIZE]; volatile u32 *mode = (uint32_t *)(SRAM_BASE+0xa00); uint32_t cnt __attribute__((at(0x20000a00))); uint32_t tmpwork __attribute__((at(0x20000a01))); uint32_t tmpmode __attribute__((at(0x20000a02))); uint32_t tmptimes __attribute__((at(0x20000a03))); volatile u32 tmpdata;解释一下这段代码

时间: 2024-04-18 17:27:04 浏览: 76
这段代码定义了一些全局变量和宏以及一些特殊的变量声明。下面是对每行代码的解释: 1. `uint8_t id;`: 声明了一个8位无符号整数变量 `id`。 2. `typedef void (*pFunction)(void);`: 声明了一个函数指针类型 `pFunction`,该函数指针指向无返回值且无参数的函数。 3. `u8 rx_buffer[200]={0,};`: 声明了一个200字节大小的无符号8位整数数组 `rx_buffer`,并初始化为0。 4. `volatile u16 rx_count;`: 声明了一个16位无符号整数变量 `rx_count`,使用 `volatile` 关键字修饰,表示该变量可能会在中断或多线程环境中被修改。 5. `u8 command_buf[10]={0,};`: 声明了一个10字节大小的无符号8位整数数组 `command_buf`,并初始化为0。 6. `volatile u8 command_rxcnt = 0;`: 声明了一个8位无符号整数变量 `command_rxcnt`,使用 `volatile` 关键字修饰,并初始化为0。 7. `volatile u8 command_rxflag = 0;`: 声明了一个8位无符号整数变量 `command_rxflag`,使用 `volatile` 关键字修饰,并初始化为0。 8. `volatile u8 command_rxover = 0;`: 声明了一个8位无符号整数变量 `command_rxover`,使用 `volatile` 关键字修饰,并初始化为0。 9. `u8 workmode = 0;`: 声明了一个8位无符号整数变量 `workmode`,并初始化为0。 10. `u8 workvalue = 0;`: 声明了一个8位无符号整数变量 `workvalue`,并初始化为0。 11. `u8 workstate = 0;`: 声明了一个8位无符号整数变量 `workstate`,并初始化为0。 12. `u8 workstep = 0;`: 声明了一个8位无符号整数变量 `workstep`,并初始化为0。 13. `u8 worktimes = 0;`: 声明了一个8位无符号整数变量 `worktimes`,并初始化为0。 14. `volatile u8 workcnt = 0;`: 声明了一个8位无符号整数变量 `workcnt`,使用 `volatile` 关键字修饰,并初始化为0。 15. `u8 worktimes2 = 0;`: 声明了一个8位无符号整数变量 `worktimes2`,并初始化为0。 16. `volatile u8 workcnt2 = 0;`: 声明了一个8位无符号整数变量 `workcnt2`,使用 `volatile` 关键字修饰,并初始化为0。 17. `volatile u8 workcnt3 = 0;`: 声明了一个8位无符号整数变量 `workcnt3`,使用 `volatile` 关键字修饰,并初始化为0。 18. `volatile u16 wdgcnt;`: 声明了一个16位无符号整数变量 `wdgcnt`,使用 `volatile` 关键字修饰。 19. `u8 readback;`: 声明了一个无符号8位整数变量 `readback`。 20. `u8 TEXT_Buffer[4]={0,};`: 声明了一个4字节大小的无符号8位整数数组 `TEXT_Buffer`,并初始化为0。 21. `#define SIZE sizeof(TEXT_Buffer)`: 定义了一个宏 `SIZE`,表示 `TEXT_Buffer` 数组的大小。 22. `#define FLASH_SAVE_ADDR 0X08010000`: 定义了一个宏 `FLASH_SAVE_ADDR`,表示Flash存储器的保存地址。 23. `u8 datatemp[SIZE];`: 声明了一个大小为 `SIZE` 的无符号8位整数数组 `datatemp`。 24. `volatile u32 *mode = (uint32_t *)(SRAM_BASE+0xa00);`: 声明了一个指向32位无符号整数的 `volatile` 指针变量 `mode`,指向地址 `(SRAM_BASE+0xa00)`。 25. `uint32_t cnt __attribute__((at(0x20000a00)));`: 声明了一个32位无符号整数变量 `cnt`,使用 `__attribute__((at(0x20000a00)))` 将其放置在地址 `0x20000a00`。 26. `uint32_t tmpwork __attribute__((at(0x20000a01)));`: 声明了一个32位无符号整数变量 `tmpwork`,使用 `__attribute__((at(0x20000a01)))` 将其放置在地址 `0x20000a01`。 27. `uint32_t tmpmode __attribute__((at(0x20000a02)));`: 声明了一个32位无符号整数变量 `tmpmode`,使用 `__attribute__((at(0x20000a02)))` 将其放置在地址 `0x20000a02`。 28. `uint32_t tmptimes __attribute__((at(0x20000a03)));`: 声明了一个32位无符号整数变量 `tmptimes`,使用 `__attribute__((at(0x20000a03)))` 将其放置在地址 `0x20000a03`。 29. `volatile u32 tmpdata;`: 声明了一个32位无符号整数变量 `tmpdata`,使用 `volatile` 关键字修饰。 这段代码主要是在定义一些全局变量和宏,并对部分变量进行了特殊的地址分配。其中,使用 `volatile` 关键字修饰的变量可能会在中断或多线程环境中被修改,而使用 `__attribute__((at(address)))` 语法将变量放置在特定地址。这些变量的具体用途需要根据代码的上下文来确定。
阅读全文

相关推荐

/* Function used to set the DMA configuration to the default reset state *****/ void DMA_DeInit(DMA_Stream_TypeDef* DMAy_Streamx); /* Initialization and Configuration functions *********************************/ void DMA_Init(DMA_Stream_TypeDef* DMAy_Streamx, DMA_InitTypeDef* DMA_InitStruct); void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct); void DMA_Cmd(DMA_Stream_TypeDef* DMAy_Streamx, FunctionalState NewState); /* Optional Configuration functions *******************************************/ void DMA_PeriphIncOffsetSizeConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_Pincos); void DMA_FlowControllerConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FlowCtrl); /* Data Counter functions *****************************************************/ void DMA_SetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx, uint16_t Counter); uint16_t DMA_GetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx); /* Double Buffer mode functions ***********************************************/ void DMA_DoubleBufferModeConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t Memory1BaseAddr, uint32_t DMA_CurrentMemory); void DMA_DoubleBufferModeCmd(DMA_Stream_TypeDef* DMAy_Streamx, FunctionalState NewState); void DMA_MemoryTargetConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t MemoryBaseAddr, uint32_t DMA_MemoryTarget); uint32_t DMA_GetCurrentMemoryTarget(DMA_Stream_TypeDef* DMAy_Streamx); /* Interrupts and flags management functions **********************************/ FunctionalState DMA_GetCmdStatus(DMA_Stream_TypeDef* DMAy_Streamx); uint32_t DMA_GetFIFOStatus(DMA_Stream_TypeDef* DMAy_Streamx); FlagStatus DMA_GetFlagStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG); void DMA_ClearFlag(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG); void DMA_ITConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT, FunctionalState NewState); ITStatus DMA_GetITStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT); void DMA_ClearITPendingBit(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT);具体解释

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

同样,`uint8_t`、`uint16_t`、`uint32_t`和`uint64_t`是对应的无符号整数类型,它们的位宽与有符号类型相同,但不包含负值。 `size_t`是一个无符号整型,通常用来表示内存对象的大小。在32位系统上,它通常是`...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自