matlab代码求矩阵每列之间的修正余弦相似度正交度
时间: 2024-03-27 13:12:00 浏览: 64
以下是求解矩阵每列之间的修正余弦相似度和正交度的 MATLAB 代码:
```matlab
% 生成测试矩阵
A = randn(10, 5);
% 计算每列之间的修正余弦相似度
similarity = zeros(size(A, 2));
for i = 1 : size(A, 2)
for j = i+1 : size(A, 2)
similarity(i,j) = dot(A(:,i), A(:,j)) / norm(A(:,i)) / norm(A(:,j));
similarity(j,i) = similarity(i,j);
end
end
% 计算每列之间的正交度
orthogonality = eye(size(A, 2));
for i = 1 : size(A, 2)
for j = i+1 : size(A, 2)
orthogonality(i,j) = dot(A(:,i), A(:,j)) / norm(A(:,i)) / norm(A(:,j));
orthogonality(j,i) = -orthogonality(i,j);
end
end
```
其中,`A` 是待处理的矩阵,`similarity` 为每列之间的修正余弦相似度矩阵,`orthogonality` 为每列之间的正交度矩阵。
相关问题
matlab代码求两个矩阵之间的修正余弦相似度正交度
修正余弦相似度是用来衡量两个向量之间的相似度的一种方法,而正交度是指两个向量之间的正交程度。下面是求解两个矩阵之间的修正余弦相似度和正交度的 Matlab 代码:
```matlab
% 定义两个矩阵 A 和 B
A = [1, 2, 3; 4, 5, 6];
B = [2, 3, 4; 5, 6, 7];
% 计算 A 和 B 的修正余弦相似度
cos_sim = sum(A.*B, 2) ./ (sqrt(sum(A.^2, 2)) .* sqrt(sum(B.^2, 2))); % 按行计算
mean_cos_sim = mean(cos_sim); % 取平均值作为修正余弦相似度
% 计算 A 和 B 的正交度
ortho = sum(A.*B, 2) ./ (sqrt(sum(A.^2, 2)) .* sqrt(sum(B.^2, 2))); % 按行计算
mean_ortho = mean(1-ortho); % 取平均值作为正交度
```
在代码中,首先定义了两个矩阵 A 和 B,然后使用求和、平方和、点乘等运算来计算修正余弦相似度和正交度。最后,将每个向量的结果取平均值作为整个矩阵的修正余弦相似度和正交度。
阅读全文
相关推荐












