sparksql中的regexp_replace
时间: 2023-08-18 22:32:19 浏览: 247
`regexp_replace`是Spark SQL中的一个函数,用于将字符串中符合正则表达式的部分替换为指定的字符串。
具体用法如下:
```
regexp_replace(str, pattern, replacement)
```
其中,`str`是需要被替换的字符串,`pattern`是一个正则表达式,用于匹配需要被替换的部分,`replacement`是用于替换的字符串。
例如,假设有一个字符串为“hello world”,我们想将其中的“world”替换为“universe”,可以使用如下的SQL语句:
```
SELECT regexp_replace('hello world', 'world', 'universe');
```
执行结果为“hello universe”。
相关问题
regexp_replace去特殊符号
回答: regexp_replace函数可以用于去除文本中的特殊字符。通过使用正则表达式,可以将特殊字符替换为空字符串。例如,可以使用regexp_replace函数将字符串中的特殊字符替换为空格。另外,如果你想将日期格式从yyyy-MM-dd转换为yyyyMMdd,也可以使用regexp_replace函数进行替换。需要注意的是,当要匹配特殊的隐藏字符如换行符、制表符时,需要使用四个\进行转义。使用这个函数可以解决去除特殊符号的问题。<em>1</em><em>2</em><em>3</em>
#### 引用[.reference_title]
- *1* [HIVE使用regexp_replace替换string特殊字符](https://blog.csdn.net/zcb_data/article/details/126172008)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
- *2* [Hive中没有replace的,用regexp_replace注意特殊字符](https://blog.csdn.net/someInNeed/article/details/108636962)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
- *3* [[SparkSQL] regexp_replace函数使用 去除特殊隐藏字符\n\t\r](https://blog.csdn.net/weixin_43376907/article/details/98982458)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}} ] [.reference_item]
[ .reference_list ]
sparksql size
### Spark SQL Size Function Usage and Examples
In Spark SQL, the `size` function returns the number of elements in an array or map. This function helps users understand how many items are contained within these data structures.
For arrays, this function counts the total number of elements present:
```sql
SELECT size(array(1, 2, null, 3)) AS array_size;
```
The result will show `array_size=4`, indicating four elements exist inside the given array including NULL values[^4].
When applied to maps, it calculates the count of key-value pairs available:
```sql
SELECT size(map('a', 'apple', 'b', 'banana')) AS map_size;
```
This query would output `map_size=2`, showing two entries reside within the specified map structure.
Additionally, when working with strings as part of more complex queries involving configurations like `spark.sql.parser.escapedStringLiterals`, one might need to combine multiple functions alongside `size`. However, directly using `size` on a string does not provide meaningful results since strings do not have explicit sizes beyond their character length which can be obtained through other means such as LENGTH() function[^2].
To demonstrate combining different functionalities while ensuring proper handling of special characters based on configuration settings mentioned earlier:
```sql
SET spark.sql.parser.escapedStringLiterals=true;
WITH sample_data AS (
SELECT '\abc' AS str_col
)
SELECT
SIZE(split(str_col,'')) AS char_count,
regexp_replace(str_col,'\\\\','') AS cleaned_str
FROM sample_data;
```
Here, setting up escaped string literals ensures correct interpretation during processing before applying additional transformations. Note that direct application of `SIZE()` here serves illustrative purposes rather than practical utility due to its intended use case being primarily for collections (arrays/maps).
--related questions--
1. How does changing the value of `spark.sql.parser.escapedStringLiterals` affect query outcomes?
2. Can you explain what happens internally when calling the `reverse` function in Spark SQL?
3. What alternatives exist for manipulating JSON objects stored as columns in datasets using Spark SQL besides standard methods provided by default?
4. Is there any performance difference between performing operations at DataFrame level versus utilizing built-in SQL functions offered by Spark?
阅读全文
相关推荐












