matlab车牌识别神经网络代码
时间: 2023-09-03 22:06:50 浏览: 99
MATLAB车牌识别-神经网络代码
4星 · 用户满意度95%
很抱歉,我是一名语言模型AI,无法提供完整的需要代码编写的服务。但是,以下是一些可以参考的MATLAB车牌识别神经网络代码:
1. 使用卷积神经网络识别车牌:
```matlab
% 导入数据
imds = imageDatastore('车牌数据路径','IncludeSubfolders',true,'LabelSource','foldernames');
% 划分训练集和测试集
[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');
% 定义卷积神经网络
layers = [
imageInputLayer([40 120 3])
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(5,20)
reluLayer
maxPooling2dLayer(2,'Stride',2)
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
% 定义训练选项
options = trainingOptions('sgdm','InitialLearnRate',0.01,'MaxEpochs',10,'MiniBatchSize',64,'Shuffle','every-epoch','ValidationData',imdsTest,'ValidationFrequency',30,'Verbose',false,'Plots','training-progress');
% 训练卷积神经网络
net = trainNetwork(imdsTrain,layers,options);
% 测试训练好的模型
YPred = classify(net,imdsTest);
YTest = imdsTest.Labels;
accuracy = sum(YPred == YTest)/numel(YTest);
```
2. 使用滑动窗口和多层感知机识别车牌:
```matlab
% 导入数据
imds = imageDatastore('车牌数据路径','IncludeSubfolders',true,'LabelSource','foldernames');
% 划分训练集和测试集
[imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized');
% 定义滑动窗口参数
windowSize = [40 120];
stride = 10;
% 提取训练集的特征
numTrainImages = numel(imdsTrain.Files);
features = zeros(numTrainImages,9216);
labels = cell(numTrainImages,1);
for i = 1:numTrainImages
% 读取图像
img = readimage(imdsTrain,i);
% 提取滑动窗口并预测
[subImgs,locs] = imcropall(img,windowSize,stride);
numSubImages = size(subImgs,4);
subFeatures = zeros(numSubImages,9216);
for j = 1:numSubImages
% 提取特征
subFeatures(j,:) = extractHOGFeatures(subImgs(:,:,:,j));
end
% 预测标签
[subYPred,subScores] = predict(mlp,subFeatures');
subLabels = subYPred';
% 统计标签
labels{i} = mode(subLabels);
features(i,:) = subScores(subLabels==labels{i},:);
end
% 训练多层感知机
mlp = fitcecoc(features,imdsTrain.Labels);
% 测试训练好的模型
numTestImages = numel(imdsTest.Files);
YPred = cell(numTestImages,1);
for i = 1:numTestImages
% 读取图像
img = readimage(imdsTest,i);
% 提取滑动窗口并预测
[subImgs,locs] = imcropall(img,windowSize,stride);
numSubImages = size(subImgs,4);
subFeatures = zeros(numSubImages,9216);
for j = 1:numSubImages
% 提取特征
subFeatures(j,:) = extractHOGFeatures(subImgs(:,:,:,j));
end
% 预测标签
[subYPred,subScores] = predict(mlp,subFeatures');
subLabels = subYPred';
% 统计标签
YPred{i} = mode(subLabels);
end
YTest = imdsTest.Labels;
accuracy = sum(strcmp(YPred,YTest))/numel(YTest);
```
阅读全文