c++旅行商问题遗传算法
时间: 2023-10-11 14:13:45 浏览: 101
旅行商问题是一个经典的组合优化问题,它的目标是在不重复经过每个城市的前提下,完成所有城市的旅行并回到起点,使得总路程最短。遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择、交叉和变异等过程来搜索最优解。
在使用遗传算法解决旅行商问题时,一般需要进行以下步骤:
1. 确定问题的编码方式,即将每个城市表示成一个基因,将整个旅行序列表示成一个染色体。
2. 初始化种群,即随机生成多个个体作为初始解。
3. 评估每个个体的适应度,即计算每个个体的总路程。
4. 选择优秀的个体作为父代,可以采用轮盘赌选择等方法。
5. 进行交叉和变异操作,产生新的个体。
6. 评估新个体的适应度,并选择出最优解。
7. 不断重复步骤4-6,直到达到预设的停止条件。
需要注意的是,在实际操作中,还需要考虑一些优化策略,如精英保留、多次交叉和变异等措施,以提高算法的效率和精度。
相关问题
c++旅行商问题遗传算法具体代码
下面是一个简单的C++代码示例,用遗传算法求解旅行商问题:
```C++
#include <iostream>
#include <vector>
#include <algorithm>
#include <random>
using namespace std;
// 定义城市结构体
struct City {
double x, y;
};
// 定义遗传算法参数
const int POPULATION_SIZE = 100; // 种群大小
const int MAX_GENERATION = 1000; // 最大迭代次数
const double CROSSOVER_RATE = 0.8; // 交叉概率
const double MUTATION_RATE = 0.1; // 变异概率
const int TOURNAMENT_SIZE = 5; // 锦标赛选择的比例
// 定义全局变量
int num_cities; // 城市数量
vector<City> cities; // 城市数组
vector<vector<int>> population; // 种群数组
// 计算两个城市间的距离
double distance(int a, int b) {
double dx = cities[a].x - cities[b].x;
double dy = cities[a].y - cities[b].y;
return sqrt(dx * dx + dy * dy);
}
// 计算一条路径的总距离
double path_distance(const vector<int>& path) {
double dist = 0.0;
for (int i = 0; i < num_cities - 1; i++) {
dist += distance(path[i], path[i+1]);
}
dist += distance(path[num_cities-1], path[0]);
return dist;
}
// 初始化种群
void init_population() {
for (int i = 0; i < POPULATION_SIZE; i++) {
vector<int> path(num_cities);
for (int j = 0; j < num_cities; j++) {
path[j] = j;
}
random_shuffle(path.begin(), path.end());
population.push_back(path);
}
}
// 锦标赛选择
vector<int> tournament_selection() {
vector<int> result;
mt19937 rng(random_device{}());
uniform_int_distribution<int> dist(0, POPULATION_SIZE-1);
for (int i = 0; i < TOURNAMENT_SIZE; i++) {
int index = dist(rng);
result.push_back(index);
}
sort(result.begin(), result.end());
return {population[result[0]], population[result[1]]};
}
// 交叉操作
void crossover(vector<int>& parent1, vector<int>& parent2) {
mt19937 rng(random_device{}());
uniform_int_distribution<int> dist(0, num_cities-1);
int pos1 = dist(rng);
int pos2 = dist(rng);
if (pos1 > pos2) {
swap(pos1, pos2);
}
vector<int> child1(num_cities, -1), child2(num_cities, -1);
for (int i = pos1; i <= pos2; i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
int index1 = pos2 + 1, index2 = pos2 + 1;
while (index1 < num_cities && index2 < num_cities) {
int city1 = parent1[index1];
int city2 = parent2[index2];
if (find(child1.begin(), child1.end(), city2) == child1.end()) {
child1[index1] = city2;
index1++;
}
if (find(child2.begin(), child2.end(), city1) == child2.end()) {
child2[index2] = city1;
index2++;
}
if (index1 == index2) {
index2++;
}
}
for (int i = 0; i < num_cities; i++) {
if (child1[i] == -1) {
child1[i] = parent2[i];
}
if (child2[i] == -1) {
child2[i] = parent1[i];
}
}
parent1 = child1;
parent2 = child2;
}
// 变异操作
void mutation(vector<int>& path) {
mt19937 rng(random_device{}());
uniform_int_distribution<int> dist(0, num_cities-1);
int pos1 = dist(rng);
int pos2 = dist(rng);
swap(path[pos1], path[pos2]);
}
int main() {
// 读入城市数据
cin >> num_cities;
for (int i = 0; i < num_cities; i++) {
City city;
cin >> city.x >> city.y;
cities.push_back(city);
}
// 初始化种群
init_population();
// 迭代遗传算法
for (int generation = 0; generation < MAX_GENERATION; generation++) {
// 计算适应度
vector<pair<double, int>> fitness;
for (int i = 0; i < POPULATION_SIZE; i++) {
double dist = path_distance(population[i]);
fitness.push_back({1.0 / dist, i});
}
sort(fitness.begin(), fitness.end(), greater<>());
// 输出当前最优解
cout << "Generation " << generation << ": " << 1.0 / fitness[0].first << endl;
// 选择、交叉、变异
vector<vector<int>> new_population;
while (new_population.size() < POPULATION_SIZE) {
auto parents = tournament_selection();
vector<int> child1 = parents[0], child2 = parents[1];
if ((double)rand() / RAND_MAX < CROSSOVER_RATE) {
crossover(child1, child2);
}
if ((double)rand() / RAND_MAX < MUTATION_RATE) {
mutation(child1);
}
if ((double)rand() / RAND_MAX < MUTATION_RATE) {
mutation(child2);
}
new_population.push_back(child1);
new_population.push_back(child2);
}
// 更新种群
population = new_population;
}
// 输出最终结果
vector<pair<double, int>> fitness;
for (int i = 0; i < POPULATION_SIZE; i++) {
double dist = path_distance(population[i]);
fitness.push_back({1.0 / dist, i});
}
sort(fitness.begin(), fitness.end(), greater<>());
cout << "Best solution: " << 1.0 / fitness[0].first << endl;
return 0;
}
```
这个代码示例中,我们使用了C++的STL库来实现一些常用的操作,如随机数生成、排序等。在代码实现中,我们选择了锦标赛选择的方式来进行个体选择,采用轮盘赌的方式来进行交叉和变异操作。代码中还包括一些优化措施,如使用局部变量来避免不必要的拷贝等。
遗传 算法 旅行商问题 c++
旅行商问题是一个经典的组合优化问题,遗传算法是解决这个问题的一种常用方法。下面是一份使用C++实现遗传算法解决旅行商问题的示例代码:
```
#include <iostream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdlib>
using namespace std;
const int CITY_NUM = 10; // 城市数量
const int POPULATION_SIZE = 100; // 种群数量
const int GENERATION_NUM = 500; // 迭代次数
const double CROSSOVER_PROBABILITY = 0.8; // 交叉概率
const double MUTATION_PROBABILITY = 0.2; // 变异概率
// 城市坐标结构体
struct City
{
double x;
double y;
};
// 生成随机种群
vector<vector<int> > generate_population(int population_size, int city_num)
{
vector<vector<int> > population(population_size);
for (int i = 0; i < population_size; i++)
{
vector<int> chromosome(city_num);
for (int j = 0; j < city_num; j++)
{
chromosome[j] = j;
}
random_shuffle(chromosome.begin(), chromosome.end());
population[i] = chromosome;
}
return population;
}
// 计算染色体的适应度
double fitness(vector<int> chromosome, vector<City> cities)
{
double distance = 0.0;
for (int i = 0; i < chromosome.size() - 1; i++)
{
int city1 = chromosome[i];
int city2 = chromosome[i + 1];
distance += sqrt((cities[city1].x - cities[city2].x) * (cities[city1].x - cities[city2].x) +
(cities[city1].y - cities[city2].y) * (cities[city1].y - cities[city2].y));
}
distance += sqrt((cities[chromosome[chromosome.size() - 1]].x - cities[chromosome[0]].x) *
(cities[chromosome[chromosome.size() - 1]].x - cities[chromosome[0]].x) +
(cities[chromosome[chromosome.size() - 1]].y - cities[chromosome[0]].y) *
(cities[chromosome[chromosome.size() - 1]].y - cities[chromosome[0]].y));
return 1.0 / distance;
}
// 选择操作
vector<vector<int> > selection(vector<vector<int> > population, vector<City> cities)
{
vector<vector<int> > new_population;
double fitness_sum = 0.0;
for (int i = 0; i < population.size(); i++)
{
fitness_sum += fitness(population[i], cities);
}
for (int i = 0; i < population.size(); i++)
{
double p = rand() / (double)RAND_MAX;
double cumulative_probability = 0.0;
for (int j = 0; j < population.size(); j++)
{
cumulative_probability += fitness(population[j], cities) / fitness_sum;
if (p <= cumulative_probability)
{
new_population.push_back(population[j]);
break;
}
}
}
return new_population;
}
// 交叉操作
vector<vector<int> > crossover(vector<vector<int> > population)
{
vector<vector<int> > new_population;
for (int i = 0; i < population.size(); i += 2)
{
double p = rand() / (double)RAND_MAX;
if (p <= CROSSOVER_PROBABILITY)
{
int pos1 = rand() % (population[i].size() - 1) + 1;
int pos2 = rand() % (population[i].size() - pos1) + pos1 + 1;
vector<int> child1, child2;
child1.resize(population[i].size());
child2.resize(population[i].size());
for (int j = 0; j < pos1; j++)
{
child1[j] = population[i][j];
child2[j] = population[i + 1][j];
}
for (int j = pos1; j < pos2; j++)
{
child1[j] = population[i + 1][j];
child2[j] = population[i][j];
}
for (int j = pos2; j < population[i].size(); j++)
{
child1[j] = population[i][j];
child2[j] = population[i + 1][j];
}
new_population.push_back(child1);
new_population.push_back(child2);
}
else
{
new_population.push_back(population[i]);
new_population.push_back(population[i + 1]);
}
}
return new_population;
}
// 变异操作
vector<vector<int> > mutation(vector<vector<int> > population)
{
for (int i = 0; i < population.size(); i++)
{
double p = rand() / (double)RAND_MAX;
if (p <= MUTATION_PROBABILITY)
{
int pos1 = rand() % (population[i].size() - 1) + 1;
int pos2 = rand() % (population[i].size() - pos1) + pos1 + 1;
reverse(population[i].begin() + pos1, population[i].begin() + pos2);
}
}
return population;
}
// 主函数
int main()
{
srand((unsigned)time(NULL));
vector<City> cities(CITY_NUM);
for (int i = 0; i < CITY_NUM; i++)
{
cities[i].x = rand() / (double)RAND_MAX;
cities[i].y = rand() / (double)RAND_MAX;
}
vector<vector<int> > population = generate_population(POPULATION_SIZE, CITY_NUM);
for (int i = 0; i < GENERATION_NUM; i++)
{
population = selection(population, cities);
population = crossover(population);
population = mutation(population);
}
double max_fitness = 0.0;
int max_index = 0;
for (int i = 0; i < population.size(); i++)
{
double f = fitness(population[i], cities);
if (f > max_fitness)
{
max_fitness = f;
max_index = i;
}
}
cout << "The optimal solution is: ";
for (int i = 0; i < population[max_index].size(); i++)
{
cout << population[max_index][i] << " ";
}
cout << endl;
return 0;
}
```
这份代码使用遗传算法求解旅行商问题,其中包括随机种群生成、适应度计算、选择操作、交叉操作、变异操作等遗传算法的基本步骤。在主函数中,先随机生成一组城市坐标,然后生成随机种群,接着进行多轮迭代,最后输出最优解。
阅读全文