基于ROS系统的智能车自主路径规划与避障控制
时间: 2023-12-17 13:03:02 浏览: 489
基于ROS系统的智能车自主路径规划与避障控制,可以使用ROS中的Navigation Stack和Move Base包来实现。具体步骤如下:
1. 确定传感器:智能车需要安装激光雷达、摄像头等传感器,用于感知周围环境。
2. 创建地图:使用激光雷达等传感器采集地图数据,并使用SLAM算法生成地图。
3. 路径规划:使用Navigation Stack中的global planner进行全局路径规划,使用local planner进行局部路径规划。
4. 避障控制:使用Move Base包中的costmap进行障碍物检测与避障控制。
5. 控制执行:将路径规划和避障控制的结果转换为机器人的控制指令,控制车辆执行动作。
在以上步骤中,用户需要根据具体场景进行参数配置,并根据实际情况进行调试和优化。
相关问题
基于ROS系统的智能车自主路径规划与避障控制的代码
这里提供一个基于ROS系统的智能车自主路径规划与避障控制的demo代码,供参考:
```python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import tf
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Twist, PoseStamped
from move_base_msgs.msg import MoveBaseActionResult
from sensor_msgs.msg import LaserScan
class RobotControl():
def __init__(self):
rospy.init_node('robot_control', anonymous=False)
# 激光雷达
self.laser_sub = rospy.Subscriber('/scan', LaserScan, self.laser_callback)
# 移动底盘
self.cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10)
# 导航目标点
self.goal_sub = rospy.Subscriber('/move_base_simple/goal', PoseStamped, self.goal_callback)
self.goal_result_sub = rospy.Subscriber('/move_base/result', MoveBaseActionResult, self.goal_result_callback)
# 机器人位姿
self.odom_sub = rospy.Subscriber('/odom', Odometry, self.odom_callback)
# 初始化
self.goal = None
self.goal_reached = False
self.robot_pose = None
self.laser_data = None
def laser_callback(self, data):
self.laser_data = data
def goal_callback(self, data):
self.goal = data
self.goal_reached = False
def goal_result_callback(self, data):
if data.status.status == 3:
self.goal_reached = True
def odom_callback(self, data):
self.robot_pose = data.pose.pose
def get_distance(self, goal_pose):
return ((goal_pose.position.x - self.robot_pose.position.x) ** 2 + (goal_pose.position.y - self.robot_pose.position.y) ** 2) ** 0.5
def get_angle(self, goal_pose):
quaternion = (self.robot_pose.orientation.x, self.robot_pose.orientation.y, self.robot_pose.orientation.z, self.robot_pose.orientation.w)
euler = tf.transformations.euler_from_quaternion(quaternion)
yaw = euler[2]
goal_quaternion = (goal_pose.orientation.x, goal_pose.orientation.y, goal_pose.orientation.z, goal_pose.orientation.w)
goal_euler = tf.transformations.euler_from_quaternion(goal_quaternion)
goal_yaw = goal_euler[2]
return goal_yaw - yaw
def rotate(self, angle):
cmd_vel = Twist()
cmd_vel.angular.z = 0.3 if angle > 0 else -0.3
while abs(angle) > 0.1:
self.cmd_vel_pub.publish(cmd_vel)
angle = self.get_angle(self.goal.pose)
rospy.sleep(0.1)
cmd_vel.angular.z = 0
self.cmd_vel_pub.publish(cmd_vel)
def move(self):
cmd_vel = Twist()
distance = self.get_distance(self.goal.pose)
while distance > 0.1:
if self.laser_data is not None:
min_range = min(self.laser_data.ranges)
if min_range < 0.5:
cmd_vel.linear.x = 0
self.cmd_vel_pub.publish(cmd_vel)
return
cmd_vel.linear.x = 0.3
self.cmd_vel_pub.publish(cmd_vel)
distance = self.get_distance(self.goal.pose)
rospy.sleep(0.1)
cmd_vel.linear.x = 0
self.cmd_vel_pub.publish(cmd_vel)
def run(self):
rate = rospy.Rate(10)
while not rospy.is_shutdown():
if self.goal is not None and not self.goal_reached:
angle = self.get_angle(self.goal.pose)
if abs(angle) > 0.1:
self.rotate(angle)
else:
self.move()
if self.goal_reached:
rospy.loginfo('Goal reached!')
rate.sleep()
if __name__ == '__main__':
robot_control = RobotControl()
robot_control.run()
```
在以上代码中,我们使用了激光雷达和机器人位姿等传感器信息,实现了机器人的自主路径规划和避障控制。具体实现过程中,我们订阅了激光雷达数据、导航目标点、机器人位姿和导航结果等消息,根据这些信息计算机器人的控制指令,从而实现路径规划和避障控制的功能。
基于 ROS 系统的智能清洁车自主路径规划与避障控制的代码
以下是一个基于ROS系统的智能清洁车自主路径规划与避障控制的代码示例,具体实现可能因应用场景不同而有所差异:
```
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
#include <geometry_msgs/Twist.h>
class Robot
{
public:
Robot(){
sub = n.subscribe("/scan", 1, &Robot::callback, this);
pub = n.advertise<geometry_msgs::Twist>("/cmd_vel", 1);
linear_vel = 0.2;
angular_vel = 1.0;
}
void callback(const sensor_msgs::LaserScan::ConstPtr& msg){
float min_angle = msg->angle_min;
float max_angle = msg->angle_max;
float angle_increment = msg->angle_increment;
float range_min = msg->range_min;
float range_max = msg->range_max;
std::vector<float> ranges = msg->ranges;
float front_obstacle_distance = std::numeric_limits<float>::infinity();
float front_obstacle_angle = 0.0;
for(int i=0; i<ranges.size(); i++){
float angle = min_angle + i*angle_increment;
float range = ranges[i];
if(range < range_max && range > range_min){
if(angle <= 0.1745 && angle >= -0.1745){ // front
if(range < front_obstacle_distance){
front_obstacle_distance = range;
front_obstacle_angle = angle;
}
}
}
}
geometry_msgs::Twist msg_twist;
if(front_obstacle_distance < 1.0){
msg_twist.linear.x = 0.0;
msg_twist.angular.z = angular_vel;
}
else if(front_obstacle_distance < 2.0){
msg_twist.linear.x = 0.5*linear_vel;
msg_twist.angular.z = 0.5*angular_vel*front_obstacle_angle;
}
else{
msg_twist.linear.x = linear_vel;
msg_twist.angular.z = 0.0;
}
pub.publish(msg_twist);
}
private:
ros::NodeHandle n;
ros::Subscriber sub;
ros::Publisher pub;
float linear_vel, angular_vel;
};
int main(int argc, char** argv){
ros::init(argc, argv, "robot");
Robot robot;
ros::spin();
return 0;
}
```
上述代码中,Robot类订阅了激光雷达的数据,并根据激光雷达数据计算出前方障碍物距离和角度。根据前方障碍物的距离和角度,决定机器人的运动方向(前进、左转、右转),并通过发布Twist消息控制机器人运动。
阅读全文