GAN算法异常检测代码
时间: 2023-07-26 17:21:32 浏览: 130
以下是使用GAN算法进行异常检测的Python代码示例:
首先,我们需要定义生成器和判别器模型:
```python
from keras.layers import Input, Dense, Dropout
from keras.models import Model
def build_generator(latent_dim, output_dim):
input_layer = Input(shape=(latent_dim,))
x = Dense(128, activation='relu')(input_layer)
x = Dense(256, activation='relu')(x)
x = Dense(512, activation='relu')(x)
x = Dense(output_dim, activation='sigmoid')(x)
generator = Model(inputs=input_layer, outputs=x)
return generator
def build_discriminator(input_dim):
input_layer = Input(shape=(input_dim,))
x = Dense(512, activation='relu')(input_layer)
x = Dropout(0.2)(x)
x = Dense(256, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.2)(x)
x = Dense(1, activation='sigmoid')(x)
discriminator = Model(inputs=input_layer, outputs=x)
return discriminator
```
然后,我们可以使用生成器和判别器模型来构建GAN模型:
```python
from keras.optimizers import Adam
def build_gan(generator, discriminator):
discriminator.trainable = False
gan_input_layer = Input(shape=(latent_dim,))
x = generator(gan_input_layer)
gan_output = discriminator(x)
gan = Model(inputs=gan_input_layer, outputs=gan_output)
gan_optimizer = Adam(lr=0.0002, beta_1=0.5)
gan.compile(loss='binary_crossentropy', optimizer=gan_optimizer)
return gan
```
接下来,我们可以使用GAN模型来训练我们的异常检测器:
```python
import numpy as np
def train_gan(X_train, latent_dim, epochs):
generator = build_generator(latent_dim, X_train.shape[1])
discriminator = build_discriminator(X_train.shape[1])
gan = build_gan(generator, discriminator)
for epoch in range(epochs):
noise = np.random.normal(0, 1, size=(X_train.shape[0], latent_dim))
generated_data = generator.predict(noise)
real_data = X_train[np.random.randint(0, X_train.shape[0], size=X_train.shape[0])]
X = np.concatenate([real_data, generated_data])
y_discriminator = np.zeros(2*X_train.shape[0])
y_discriminator[:X_train.shape[0]] = 0.9
discriminator.trainable = True
discriminator_loss = discriminator.train_on_batch(X, y_discriminator)
noise = np.random.normal(0, 1, size=(X_train.shape[0], latent_dim))
y_generator = np.ones(X_train.shape[0])
discriminator.trainable = False
gan_loss = gan.train_on_batch(noise, y_generator)
if epoch % 100 == 0:
print("Epoch:", epoch, "Discriminator Loss:", discriminator_loss, "GAN Loss:", gan_loss)
return generator
```
最后,我们可以使用生成器模型来生成新的数据,并将其与原始数据进行比较来检测异常:
```python
def detect_anomalies(X_train, X_test, generator):
generated_data = generator.predict(np.random.normal(0, 1, size=(X_test.shape[0], latent_dim)))
errors = np.mean(np.power(X_test - generated_data, 2), axis=1)
threshold = np.percentile(errors, 95)
anomalies = X_test[errors > threshold]
return anomalies
```
这是一个简单的使用GAN算法进行异常检测的示例。请注意,这只是一个简单的示例,实际上可能需要更多的调整和优化才能实现更好的性能。
阅读全文