用C语言写一个卡尔曼滤波器扩展算法程序
时间: 2024-05-03 11:19:10 浏览: 106
以下是一个简单的卡尔曼滤波器扩展算法程序的示例代码:
```c
#include <stdio.h>
#define N_STATE 2 // 状态数量
#define N_OBSRV 1 // 观测值数量
void kalman_filter(double x[N_STATE], double P[N_STATE][N_STATE],
double z[N_OBSRV], double R[N_OBSRV][N_OBSRV],
double Q[N_STATE][N_STATE], double F[N_STATE][N_STATE],
double H[N_OBSRV][N_STATE], double y[N_OBSRV],
double S[N_OBSRV][N_OBSRV], double K[N_STATE][N_OBSRV])
{
// 预测步骤
double x_pred[N_STATE];
double P_pred[N_STATE][N_STATE];
for (int i = 0; i < N_STATE; i++) {
x_pred[i] = 0.0;
for (int j = 0; j < N_STATE; j++) {
x_pred[i] += F[i][j] * x[j];
}
}
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_STATE; j++) {
P_pred[i][j] = 0.0;
for (int k = 0; k < N_STATE; k++) {
P_pred[i][j] += F[i][k] * P[k][j] * F[j][k];
}
P_pred[i][j] += Q[i][j];
}
}
// 更新步骤
double y_pred[N_OBSRV];
for (int i = 0; i < N_OBSRV; i++) {
y_pred[i] = 0.0;
for (int j = 0; j < N_STATE; j++) {
y_pred[i] += H[i][j] * x_pred[j];
}
}
for (int i = 0; i < N_OBSRV; i++) {
for (int j = 0; j < N_OBSRV; j++) {
S[i][j] = 0.0;
for (int k = 0; k < N_STATE; k++) {
S[i][j] += H[i][k] * P_pred[k][j] * H[j][k];
}
S[i][j] += R[i][j];
}
}
for (int i = 0; i < N_STATE; i++) {
for (int j = 0; j < N_OBSRV; j++) {
K[i][j] = 0.0;
for (int k = 0; k < N_OBSRV; k++) {
K[i][j] += P_pred[i][k] * H[k][j] / S[k][j];
}
}
}
for (int i = 0; i < N_STATE; i++) {
x[i] = x_pred[i] + K[i][0] * (z[0] - y_pred[0]);
for (int j = 0; j < N_STATE; j++) {
P[i][j] = P_pred[i][j] - K[i][0] * S[0][j] * K[j][0];
}
}
}
int main()
{
// 初始状态
double x[N_STATE] = {0.0, 0.0};
double P[N_STATE][N_STATE] = {{1.0, 0.0}, {0.0, 1.0}};
// 观测值
double z[N_OBSRV] = {1.0};
double R[N_OBSRV][N_OBSRV] = {{1.0}};
// 系统和观测误差协方差矩阵
double Q[N_STATE][N_STATE] = {{0.1, 0.0}, {0.0, 0.1}};
double F[N_STATE][N_STATE] = {{1.0, 1.0}, {0.0, 1.0}};
double H[N_OBSRV][N_STATE] = {{1.0, 0.0}};
// 进行卡尔曼滤波
double y[N_OBSRV];
double S[N_OBSRV][N_OBSRV];
double K[N_STATE][N_OBSRV];
for (int i = 0; i < 10; i++) {
kalman_filter(x, P, z, R, Q, F, H, y, S, K);
printf("x = %f, P = %f\n", x[0], P[0][0]);
}
return 0;
}
```
此程序包含了一个简单的二维状态估计问题,并使用卡尔曼滤波器扩展算法进行估计。在实践中,您需要根据您的具体问题定义状态变量、观测变量、系统和观测误差的协方差矩阵等参数。
阅读全文