transformer完整的时序程序pytorch
时间: 2023-07-21 18:14:32 浏览: 158
transformer.zip
以下是一个完整的Transformer模型的时序程序示例,使用PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.d_model = d_model
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
def split_heads(self, x, batch_size):
"""
Split the last dimension into (n_heads, d_model) and transpose the result.
"""
x = x.view(batch_size, -1, self.n_heads, self.d_model // self.n_heads)
return x.transpose(1,2)
def forward(self, q, k, v):
batch_size = q.size(0)
q = self.q_linear(q)
k = self.k_linear(k)
v = self.v_linear(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_model / self.n_heads))
scores = F.softmax(scores, dim=-1)
x = torch.matmul(scores, v)
x = x.transpose(1,2).contiguous().view(batch_size, -1, self.d_model)
x = self.out_linear(x)
return x
class PositionwiseFeedforward(nn.Module):
def __init__(self, d_model, d_ff):
super(PositionwiseFeedforward, self).__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, d_ff):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads)
self.ffn = PositionwiseFeedforward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, x):
x_norm = self.norm1(x)
attn_output = self.self_attn(x_norm, x_norm, x_norm)
x = x + attn_output
x_norm = self.norm2(x)
ffn_output = self.ffn(x_norm)
x = x + ffn_output
return x
class TransformerEncoder(nn.Module):
def __init__(self, vocab_size, max_len, d_model, n_layers, n_heads, d_ff):
super(TransformerEncoder, self).__init__()
self.d_model = d_model
self.n_layers = n_layers
self.embedding = nn.Embedding(vocab_size, d_model)
self.position_encoding = nn.Embedding(max_len, d_model)
self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff) for _ in range(n_layers)])
def forward(self, x):
positions = torch.arange(0, x.size(1), device=x.device).unsqueeze(0).repeat(x.size(0), 1)
x = self.embedding(x) * math.sqrt(self.d_model) + self.position_encoding(positions)
for i in range(self.n_layers):
x = self.layers[i](x)
return x
```
在这个示例中,我们定义了一个TransformerEncoder模型,它由多个EncoderLayer组成。每个EncoderLayer包括一个MultiHeadAttention层和一个PositionwiseFeedforward层。我们还定义了一个MultiHeadAttention模块,它用于计算注意力分数,并将结果与值向量相乘,产生注意力输出。我们还定义了一个PositionwiseFeedforward模块,它由两个线性层组成,用于在每个位置上对特征进行前向传递。
在模型的前向传递中,我们首先对输入进行嵌入,并添加位置编码。然后,我们按顺序对每个EncoderLayer进行前向传递。最后,我们返回编码器的输出。
这个示例中使用了PyTorch的nn.Module类来定义模型,并提供了一些方便的函数和类来构建模型。关键的组件包括nn.Linear,nn.Embedding,nn.LayerNorm和nn.ModuleList。为了提高效率,我们还使用了PyTorch的自动求导功能来计算梯度。
阅读全文