# simulate login process with valid credentials
时间: 2023-12-03 11:04:21 浏览: 167
在上面的测试案例中,我们使用了 `simulate login process with valid credentials` 这行注释。这个注释的作用是告诉读者,在这个测试用例中,我们正在模拟一个使用有效的用户名和密码进行登录的过程。具体来说,我们需要编写一个名为 `login` 的函数,该函数接受用户名和密码作为参数,并返回一个字符串,表示登录的结果。下面是一个简单的实现示例:
```python
def login(username, password):
if username == "testuser" and password == "testpass":
return "Welcome, testuser!"
else:
return "Invalid username or password."
```
在这个实现中,我们检查用户名和密码是否匹配。如果匹配,则返回欢迎消息,否则返回错误消息。这个实现只是一个示例,实际的登录过程可能更加复杂,需要涉及到数据库查询、密码加密等操作。
相关问题
1 Simulate a dataset containing continuous traits with given ℎ 2 . Split it into training and testing datasets with proportion 4 ∶ 1. set.seed(20132014) n <- 5000 p <- 1000 h <- c(0.2, 0.8)[1] # simulate genotype (not exactly) x_r <- matrix(rnorm(n * p), ncol = p) xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE) xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE) x <- (x_r - xmean)/xsd # ... 2 4 Calculate polygenic scores with both the marginnal and joint models on testing data. And compare their performance under low and high ℎ
Sure, here's the code to calculate polygenic scores with both the marginal and joint models on the testing data:
```R
# perform Lasso on training set
fit_joint <- glmnet(x_train, y_train, alpha = 1)
# calculate polygenic scores on testing set using joint model
ps_joint <- x_test %*% fit_joint$beta[,1]
# perform simple linear regression on training set
fit_marginal <- lm(y_train ~ x_train)
# calculate polygenic scores on testing set using marginal model
ps_marginal <- x_test %*% coef(fit_marginal)[-1]
# compare performance under low and high h^2
h_low <- c(0.2, 0.8)[1]
h_high <- c(0.2, 0.8)[2]
# calculate correlation between true and predicted phenotype for joint model (low h^2)
cor_joint_low <- cor(y_test[h == h_low], ps_joint[h == h_low])
# calculate correlation between true and predicted phenotype for marginal model (low h^2)
cor_marginal_low <- cor(y_test[h == h_low], ps_marginal[h == h_low])
# calculate correlation between true and predicted phenotype for joint model (high h^2)
cor_joint_high <- cor(y_test[h == h_high], ps_joint[h == h_high])
# calculate correlation between true and predicted phenotype for marginal model (high h^2)
cor_marginal_high <- cor(y_test[h == h_high], ps_marginal[h == h_high])
```
To compare the performance of the two models under low and high h^2, we calculated the correlation between the true and predicted phenotype for each model. The correlation for the joint model was calculated using the polygenic scores calculated with the Lasso model, and the correlation for the marginal model was calculated using the polygenic scores calculated with simple linear regression.
You can compare the performance by looking at the values of `cor_joint_low`, `cor_marginal_low`, `cor_joint_high`, and `cor_marginal_high`. The higher the correlation, the better the model's performance at predicting the phenotype.
I hope this helps! Let me know if you have any further questions.
用r语言写程序:Simulate a dataset containing continuous traits with given h^2. Split itinto training and testing datasets with proportion 4 ∶ 1.set.seed(20132014)n <- 5000p <- 1000h <- c(0.2, 0.8)[1]# simulate genotype (not exactly)x_r <- matrix(rnorm(n * p), ncol = p)xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE)xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE)x <- (x_r - xmean)/xsdPlease perform the marginal model.## [1] 526 776 50 557 801 345 298 559 178 214 • Show the locations of significant SNPs.• Replicate above figure, and highlight the significant coefficents in red.
Sure, here is the R code to simulate the dataset, split it into training and testing datasets, and perform the marginal model:
```R
# Simulate dataset
set.seed(20132014)
n <- 5000
p <- 1000
h2 <- 0.2
x_r <- matrix(rnorm(n * p), ncol = p)
xmean <- matrix(rep(colMeans(x_r), n), ncol=p, byrow = TRUE)
xsd <- matrix(rep(apply(x_r, 2, sd), n), ncol=p, byrow = TRUE)
x <- (x_r - xmean)/xsd
beta <- rnorm(p, mean = 0, sd = sqrt(h2/p))
y <- x %*% beta + rnorm(n, mean = 0, sd = sqrt(1 - h2))
# Split into training and testing datasets
train_idx <- sample(1:n, size = n/5*4, replace = FALSE)
x_train <- x[train_idx, ]
y_train <- y[train_idx]
x_test <- x[-train_idx, ]
y_test <- y[-train_idx]
# Perform marginal model
library(glmnet)
fit <- glmnet(x_train, y_train, family = "gaussian")
cvfit <- cv.glmnet(x_train, y_train, family = "gaussian")
lambda_min <- cvfit$lambda.min
beta_hat <- coef(fit, s = lambda_min)[-1, ]
```
To show the locations of significant SNPs, we can plot the absolute values of the estimated coefficients and highlight the significant ones in red:
```R
# Plot coefficients
library(ggplot2)
library(dplyr)
beta_df <- data.frame(beta_hat) %>%
mutate(SNP = row_number()) %>%
gather(key = "beta", value = "value", -SNP) %>%
mutate(value = abs(value))
ggplot(beta_df, aes(x = SNP, y = value)) +
geom_point() +
scale_y_log10() +
labs(title = "Estimated Coefficients",
x = "SNP",
y = "Absolute Value") +
theme(plot.title = element_text(hjust = 0.5),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
# Highlight significant coefficients
significant_snps <- which(beta_hat != 0)
significant_df <- beta_df %>%
filter(SNP %in% significant_snps) %>%
mutate(significant = TRUE)
ggplot(beta_df, aes(x = SNP, y = value)) +
geom_point() +
geom_point(data = significant_df, aes(color = significant), size = 2) +
scale_y_log10() +
scale_color_manual(values = c("black", "red")) +
labs(title = "Estimated Coefficients",
x = "SNP",
y = "Absolute Value") +
theme(plot.title = element_text(hjust = 0.5),
axis.text.x = element_blank(),
axis.ticks.x = element_blank())
```
This should give you the desired plot with significant coefficients highlighted in red.
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)