灰狼算法分类代码
时间: 2023-07-05 13:03:59 浏览: 99
基于灰狼算法(GWO)优化径向基神经网络(GWO-RBF)的分类预测 matlab代码,优化参数为扩散速度,采用交叉验证
3星 · 编辑精心推荐
以下是使用灰狼算法进行分类的Python代码示例:
```python
import numpy as np
# 定义灰狼算法类
class GreyWolfOptimizer:
def __init__(self, objective_function, dim, search_space, max_iter, population_size):
self.objective_function = objective_function
self.dim = dim
self.search_space = search_space
self.max_iter = max_iter
self.population_size = population_size
self.alpha_pos = np.zeros(dim)
self.beta_pos = np.zeros(dim)
self.delta_pos = np.zeros(dim)
self.alpha_score = float('inf')
self.beta_score = float('inf')
self.delta_score = float('inf')
self.positions = np.zeros((population_size, dim))
self.scores = np.zeros(population_size)
# 初始化种群位置
def initialize_positions(self):
for i in range(self.population_size):
self.positions[i] = np.random.uniform(self.search_space[0], self.search_space[1], self.dim)
self.scores[i] = self.objective_function(self.positions[i])
# 更新灰狼位置
def update_positions(self, iter):
a = 2 - 2 * iter / self.max_iter
for i in range(self.population_size):
for j in range(self.dim):
r1 = np.random.rand()
r2 = np.random.rand()
A1 = 2 * a * r1 - a
C1 = 2 * r2
D_alpha = abs(C1 * self.alpha_pos[j] - self.positions[i][j])
X1 = self.alpha_pos[j] - A1 * D_alpha
r1 = np.random.rand()
r2 = np.random.rand()
A2 = 2 * a * r1 - a
C2 = 2 * r2
D_beta = abs(C2 * self.beta_pos[j] - self.positions[i][j])
X2 = self.beta_pos[j] - A2 * D_beta
r1 = np.random.rand()
r2 = np.random.rand()
A3 = 2 * a * r1 - a
C3 = 2 * r2
D_delta = abs(C3 * self.delta_pos[j] - self.positions[i][j])
X3 = self.delta_pos[j] - A3 * D_delta
self.positions[i][j] = (X1 + X2 + X3) / 3
if self.positions[i][j] < self.search_space[0]:
self.positions[i][j] = self.search_space[0]
if self.positions[i][j] > self.search_space[1]:
self.positions[i][j] = self.search_space[1]
# 更新最优解
def update_best(self):
for i in range(self.population_size):
if self.scores[i] < self.alpha_score:
self.alpha_score = self.scores[i]
self.alpha_pos = self.positions[i].copy()
elif self.scores[i] < self.beta_score:
self.beta_score = self.scores[i]
self.beta_pos = self.positions[i].copy()
elif self.scores[i] < self.delta_score:
self.delta_score = self.scores[i]
self.delta_pos = self.positions[i].copy()
# 运行灰狼算法
def run(self):
self.initialize_positions()
for i in range(self.max_iter):
self.update_positions(i)
for j in range(self.population_size):
self.scores[j] = self.objective_function(self.positions[j])
self.update_best()
return self.alpha_score, self.alpha_pos
```
在这个示例中,我们定义了一个`GreyWolfOptimizer`类来实现灰狼算法。在初始化函数中,我们需要传入以下参数:
- `objective_function`:要最小化的目标函数。
- `dim`:问题的维度。
- `search_space`:搜索空间。
- `max_iter`:迭代次数。
- `population_size`:种群大小。
然后我们可以使用`initialize_positions`函数来初始化种群位置,并使用`update_positions`函数来更新灰狼位置。在更新灰狼位置时,我们使用了灰狼算法的公式。最后,我们使用`update_best`函数来更新最优解。
最后,我们可以使用`run`函数来运行整个灰狼算法,并返回最优解的值和位置。
阅读全文