车牌字符识别yolo
时间: 2024-04-16 19:23:12 浏览: 168
基于YOLO V8的车牌识别系统可以准确识别正面水平放置的蓝底白字车牌。然而,该系统目前还不能实现对汉字的识别,因为数据不够多[^1]。如果您有自己的图像,可以尝试使用该系统进行测试。以下是一个基于YOLO V8的车牌字符识别的示例代码:
```python
# 导入所需的库
import cv2
import numpy as np
# 加载YOLO V8模型
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# 加载车牌字符类别标签
classes = []
with open("classes.txt", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 加载图像
image = cv2.imread("car_plate.jpg")
# 对图像进行预处理
blob = cv2.dnn.blobFromImage(image, 1/255, (416, 416), (0, 0, 0), True, crop=False)
# 将预处理后的图像输入到模型中进行推理
net.setInput(blob)
outs = net.forward()
# 解析模型输出
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection * image.shape)
center_y = int(detection * image.shape)
width = int(detection * image.shape)
height = int(detection * image.shape)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# 非最大抑制,筛选出最可能的车牌字符区域
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 在图像上绘制识别结果
for i in indices:
i = i
box = boxes[i]
left = box
top = box[1]
width = box
height = box
cv2.rectangle(image, (left, top), (left + width, top + height), (0, 255, 0), 2)
cv2.putText(image, classes[class_ids[i]], (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示识别结果
cv2.imshow("Car Plate Recognition", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,上述代码中的模型权重文件(yolov3.weights)、模型配置文件(yolov3.cfg)和类别标签文件(classes.txt)需要根据实际情况进行替换。此外,您还需要将待识别的车牌图像(car_plate.jpg)放在相应的路径下。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)