real(nx,ny) :: Q_ul, Q_ur, Q_vl, Q_vr, Dfly_rho, Dfly_U, Dfly_V, Dfly_E

时间: 2023-09-19 12:07:46 浏览: 6
这是一个 Fortran 语言中的变量声明语句,其中: - `real` 表示实数类型; - `(nx,ny)` 表示数组的维度,即该数组有 `nx` 行、`ny` 列; - `Q_ul`、`Q_ur`、`Q_vl`、`Q_vr`、`Dfly_rho`、`Dfly_U`、`Dfly_V` 和 `Dfly_E` 是数组元素的名称。 具体来说,这个语句定义了一个二维数组,包含了 `nx` 行和 `ny` 列,其中每个元素都是实数类型。数组的元素名称分别是 `Q_ul`、`Q_ur`、`Q_vl`、`Q_vr`、`Dfly_rho`、`Dfly_U`、`Dfly_V` 和 `Dfly_E`。
相关问题

pandas多列满足条件

要选择满足多列条件的行,可以使用Pandas中的逻辑运算符“&”(与)和“|”(或)。通过将多个条件组合在一起,可以根据多个列的值选择相应的行。 以下是一个示例代码,演示了如何使用多列条件选择行: ``` import pandas as pd # 创建一个示例数据框 df = pd.DataFrame({ 'A': [1, 2, 3, 4, 5], 'B': [2, 4, 6, 8, 10], 'C': [3, 6, 9, 12, 15] }) # 选择满足多列条件的行 selected_rows = df[(df['A'] > 3) & (df['B'] < 10)] # 打印选中的行 print(selected_rows) ``` 在上面的示例中,我们创建了一个名为df的数据框,并使用两个条件选择了满足'A'列大于3且'B'列小于10的行。最后,我们打印出满足条件的行。 请注意,条件之间需要用括号括起来,并使用逻辑运算符“&”进行连接。如果需要选择满足多个条件之一的行,可以使用逻辑运算符“|”。 希望这个例子能够帮助您理解如何使用Pandas选择满足多列条件的行。如果您有任何进一步的问题,请随时提问。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【Pandas数据处理100例】(十四):Pandas提取多个列同时满足给定条件的行](https://blog.csdn.net/m0_47256162/article/details/128081872)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Python Pandas Dataframe索引 数据读取[] loc iloc](https://blog.csdn.net/dfly_zx/article/details/110427331)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Python Pandas中根据列的值选取多行数据](https://download.csdn.net/download/weixin_38634037/13995337)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

机器学习模型评估指标

机器学习模型的评估指标主要分为分类和回归两大类。在分类模型中,常用的评估指标包括混淆矩阵、准确率、错误率、精确率、召回率、F1 score、ROC曲线、AUC、PR曲线、对数损失和分类指标的文本报告。而在回归模型中,常用的评估指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、归一化均方根误差(NRMSE)和决定系数(R2)。\[3\] 其中,ROC曲线是一种常用的评估分类模型性能的指标,它独立于responders比例的变化,可以帮助我们了解模型在不同阈值下的表现。\[1\]而MAE(平均绝对误差)是一种常用的评估回归模型性能的指标,它衡量了预测值与真实值之间的平均绝对差异。\[2\] 综上所述,机器学习模型的评估指标根据不同的任务和模型类型选择不同的指标进行评估,以帮助我们了解模型的性能和效果。 #### 引用[.reference_title] - *1* [你知道这11个重要的机器学习模型评估指标吗?](https://blog.csdn.net/fendouaini/article/details/100013633)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [机器学习模型评估指标](https://blog.csdn.net/dfly_zx/article/details/123142984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

最新推荐

Scratch 经典游戏:1943-中途岛战役

方向键-移动,空格-射击。 此后仍有作品或有趣游戏、爆笑作品,请关注原作者,且点赞加收藏,记得推荐好友。下载即可游玩,快来下载吧!五星好评可以私信我,免费送资源!快来评论吧!

3D打印行业研究:“为什么”转向“如何”之成本端的思考.docx

3D打印行业研究:“为什么”转向“如何”之成本端的思考.docx

torchvision-0.6.0+cu101-cp35-cp35m-linux_x86_64.whl.zip

torchvision-0.6.0+cu101-cp35-cp35m-linux_x86_64.whl.zip

树组件资料,仅个人使用

树组件资料,仅个人使用

HTML 圣诞节.zip

HTML 圣诞节.zip

哈希排序等相关算法知识

哈希排序等相关算法知识

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

帮我用C++和Qt写一个m*n的矩阵最小路径和可视化,要求用格子展示,最小路径采用其它的颜色标记

好的,以下是一个基本的实现: 1. 首先需要定义一个矩阵类来存储矩阵数据和计算最小路径和。 ```c++ class Matrix{ public: Matrix(int rows, int cols); ~Matrix(); void setValue(int i, int j, int value); //设置元素的值 int getValue(int i, int j); //获取元素的值 int getRows(); //获取行数 int getCols(); //获取列数 int getMinPathSum(); //获取最

基于android的视频播放器的设计与实现--大学毕业论文.doc

基于android的视频播放器的设计与实现--大学毕业论文.doc