不导入模块,自主编写隐马尔可夫模型进行词性标注Python代码
时间: 2024-03-26 21:40:48 浏览: 58
好的,以下是一个简单的自主编写的隐马尔可夫模型进行词性标注的Python代码示例:
```python
# 定义词性标注器类
class HMMTagger:
def __init__(self):
self.tags = set() # 所有词性标记
self.words = set() # 所有单词
self.tag_transitions = {} # 词性标记转移概率
self.word_given_tag = {} # 词在给定词性标记下出现的概率
self.start_tag = {} # 句首词性标记概率
# 训练模型
def train(self, tagged_sentences):
# 统计词性标记和单词
for sentence in tagged_sentences:
for word, tag in sentence:
self.tags.add(tag)
self.words.add(word)
# 计算词性标记转移概率
for sentence in tagged_sentences:
for i in range(len(sentence) - 1):
curr_tag, next_tag = sentence[i][1], sentence[i + 1][1]
if curr_tag in self.tag_transitions:
if next_tag in self.tag_transitions[curr_tag]:
self.tag_transitions[curr_tag][next_tag] += 1
else:
self.tag_transitions[curr_tag][next_tag] = 1
else:
self.tag_transitions[curr_tag] = {next_tag: 1}
# 计算每个词在给定词性标记下出现的概率
for sentence in tagged_sentences:
for word, tag in sentence:
if tag in self.word_given_tag:
if word in self.word_given_tag[tag]:
self.word_given_tag[tag][word] += 1
else:
self.word_given_tag[tag][word] = 1
else:
self.word_given_tag[tag] = {word: 1}
# 计算句首词性标记概率
for sentence in tagged_sentences:
tag = sentence[0][1]
if tag in self.start_tag:
self.start_tag[tag] += 1
else:
self.start_tag[tag] = 1
# 归一化概率
for tag1 in self.tags:
if tag1 in self.tag_transitions:
total = sum(self.tag_transitions[tag1].values())
for tag2 in self.tag_transitions[tag1]:
self.tag_transitions[tag1][tag2] /= total
for tag in self.word_given_tag:
total = sum(self.word_given_tag[tag].values())
for word in self.word_given_tag[tag]:
self.word_given_tag[tag][word] /= total
total = sum(self.start_tag.values())
for tag in self.start_tag:
self.start_tag[tag] /= total
# 预测标记
def tag(self, sentence):
# 初始化
V = [{}] # 动态规划矩阵
backpointers = [] # 回溯指针
for tag in self.tags:
if sentence[0] in self.word_given_tag[tag]:
V[0][tag] = self.start_tag[tag] * self.word_given_tag[tag][sentence[0]]
else:
V[0][tag] = 0
backpointers.append({tag: None})
# 前向递推
for t in range(1, len(sentence)):
V.append({})
new_backpointers = []
for tag2 in self.tags:
max_prob, max_tag = None, None
for tag1 in self.tags:
if tag2 in self.tag_transitions[tag1] and sentence[t] in self.word_given_tag[tag2]:
prob = V[t - 1][tag1] * self.tag_transitions[tag1][tag2] * self.word_given_tag[tag2][sentence[t]]
if max_prob is None or prob > max_prob:
max_prob, max_tag = prob, tag1
if max_prob is not None:
V[t][tag2] = max_prob
else:
V[t][tag2] = 0
new_backpointers.append({tag2: max_tag})
backpointers.append(new_backpointers)
# 回溯预测的标记序列
max_prob, max_tag = None, None
for tag in self.tags:
if max_prob is None or V[-1][tag] > max_prob:
max_prob, max_tag = V[-1][tag], tag
tags = [max_tag]
for backpointers_t in reversed(backpointers[1:]):
tags.append(backpointers_t[tags[-1]])
tags.reverse()
return list(zip(sentence, tags))
```
在上述代码中,我们定义了一个HMMTagger类,其中train方法用于训练模型,tag方法用于预测标记。train方法计算了词性标记转移概率、每个词在给定词性标记下出现的概率和句首词性标记概率;tag方法使用了Viterbi算法进行标记预测。请注意,这只是一个简单的实现,还可以进行更多的优化和改进。
希望这个示例代码对您有所帮助。
阅读全文