基于LSTM网络的超声波测风仪阴影效应的误差补偿代码
时间: 2023-09-08 09:12:10 浏览: 141
基于Fluent和LSTM神经网络的超声波测风仪阴影效应补偿研究.pdf
以下是一个基于LSTM网络的超声波测风仪阴影效应的误差补偿代码的示例:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
dataset = pd.read_csv('wind_speed.csv', header=0, index_col=0)
dataset.index = pd.to_datetime(dataset.index)
dataset = dataset.resample('H').mean()
# 数据预处理
scaler = MinMaxScaler(feature_range=(0, 1))
dataset_scaled = scaler.fit_transform(dataset)
# 创建训练集和测试集
train_size = int(len(dataset_scaled) * 0.8)
test_size = len(dataset_scaled) - train_size
train, test = dataset_scaled[0:train_size, :], dataset_scaled[train_size:len(dataset_scaled), :]
# 创建数据集
def create_dataset(dataset, look_back):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 24
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 调整数据维度
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))
# 创建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 预测数据
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 反转数据缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# 绘制预测结果
plt.plot(trainY[0], label='Train Data')
plt.plot(trainPredict[:,0], label='Predicted Train Data')
plt.plot(testY[0], label='Test Data')
plt.plot(testPredict[:,0], label='Predicted Test Data')
plt.legend(loc='best')
plt.show()
```
在这个代码示例中,我们首先读取一个名为`wind_speed.csv`的数据集,然后使用`MinMaxScaler`对数据进行归一化处理。接下来,我们创建训练集和测试集,并使用`create_dataset`函数创建输入和输出数据集。然后,我们调整数据维度以适应LSTM模型,并创建一个包含一个LSTM层和一个全连接层的Keras模型。最后,我们使用该模型对数据集进行拟合并使用反转数据缩放将其转换回原始比例。最后,我们绘制了训练和测试结果。
阅读全文