transformer 语义分割
时间: 2023-08-13 20:05:19 浏览: 220
transformer语义分割
5星 · 资源好评率100%
Transformer语义分割是一种使用Transformer架构进行像素级别的图像分割任务的方法。传统的语义分割方法主要使用卷积神经网络(CNN)来提取图像特征,并进行像素分类。而Transformer则通过自注意力机制来捕捉全局上下文信息,使得模型能够更好地理解图像中不同区域之间的关系。
在Transformer语义分割中,输入是一张待分割的图像,通过编码器-解码器架构将其映射到相同大小的预测图像。编码器部分负责提取图像中的特征,而解码器则将这些特征映射到每个像素的类别概率。每个像素的类别概率可以通过Softmax函数进行归一化,从而得到最终的语义分割结果。
与传统的CNN方法相比,Transformer语义分割在处理长距离依赖性和全局上下文信息方面具有优势。然而,由于Transformer计算复杂度较高,通常需要使用一些技巧来降低计算成本,例如利用多尺度输入、注意力蒸馏等方法。
总之,Transformer语义分割是一种基于Transformer架构的图像分割方法,通过自注意力机制来捕捉全局上下文信息,提高语义分割的性能。
阅读全文