python实现apriori算法的核心代码
时间: 2024-11-10 10:11:15 浏览: 24
Apriori算法是一种用于关联规则挖掘的经典算法,其核心思想是基于“频繁项集”的发现来生成候选集,并通过剪枝过程找出支持度满足阈值的规则。以下是Python实现Apriori算法的一个简化版核心代码:
```python
from collections import defaultdict
def create_candidatetstransactions(transactions, min_support):
frequent_itemsets = []
for transaction in transactions:
frequent_itemsets.extend(transaction)
# 初始化单个项目的频繁项集
singletons = set(item for itemset in frequent_itemsets if len(itemset) == 1)
# 使用Apriori算法生成候选集
while len(singletons) > 0:
current_level = [frozenset({item}) for item in singletons]
next_candidates = [] # 存储下一层候选项
for k in current_level:
for i in singletons:
if not {i} & k: # 如果不相交,则合并
candidate = k | frozenset({i})
support = calculate_support(candidate, transactions, min_support)
if support >= min_support:
next_candidates.append((candidate, support))
# 更新频繁项集
frequent_itemsets.extend(next_candidates)
singletons = {item for candidate, _ in next_candidates for item in candidate if len(candidate) > 1}
return frequent_itemsets, next_candidates[-1][0] if next_candidates else None
def calculate_support(candidate, transactions, min_support):
count = sum(1 for transaction in transactions if candidate.issubset(transaction))
return count / len(transactions) if count >= min_support else 0
# 使用示例
transactions = [('Milk', 'Bread', 'Butter'), ('Bread', 'Butter', 'Eggs'), ('Milk', 'Butter', 'Eggs')]
min_support = 0.5
frequent_itemsets, best_itemset = create_candidatetstransactions(transactions, min_support)
print("频繁项集:", frequent_itemsets)
```
在这个代码中,`create_candidatetstransactions`函数负责生成频繁项集和候选集,`calculate_support`计算了给定项目集的支持度。你可以根据实际需求调整这个代码。
阅读全文